16
Views
19
CrossRef citations to date
0
Altmetric
Research Article

The Mechanism of Inhibition of S-Adenosyl-L-Homocysteine Hydrolase by Fluorine-Containing Adenosine Analogs

, , , &
Pages 1-13 | Received 05 Sep 1989, Published online: 27 Sep 2008

References

  • Ueland P. M. Pharmacol. Rev. 1982; 34: 223
  • Borchardt R. T. J. Med. Chem. 1980; 23: 347
  • de la Haba G., Cantoni G. L. J. Biol. Chem. 1959; 234: 603
  • Chiang P. K. Adv. Exp. Med. Biol. 1984; 165B: 199
  • Hershfield M. S., Small W. C., Premakurnar R., Bagnara A S., Fetter J. E. Biochemistry of S-Adenosylmethionine and Relared Compounds, E. Usdin, R. T. Borchardt, C. R. Creveling. Macmillan, London 1981; 657
  • Helland S., Ueland P. M. Cancer Res. 1982; 42: 1130
  • Wolfson G., Chisholm J., Tashjian A. H., Jr., Fish S., Abeles R. H. J. Biol. Chem. 1986; 261: 4492
  • Hasobe M., McKee J. G., Borcherding D. R., Keller B. T., Borchdrdt R. T. Mol, Pharmacol. 1988; 33: 713
  • De Clercq E. Biochem. Pharmacol. 1987; 36: 2567
  • De Clercq E. Nucleosides and Nucleotides 1987; 6: 197
  • McCarthy J. R., Jarvi E. T., Matthews D. P., Edwards M. L., Prakash N. J., Bowlin T. L., Mehdi S., Sunkara P. S., Bey P. J. Am. Chem. Soc. 1989; 111: 1127
  • Palmer J. L., Abeles R. H. J. Biol. Chem. 1976; 251: 5817
  • Palmer J. L., Abeles R. H. J. Biol. Chem. 1979; 254: 1217
  • Richards H. H., Chiang P. K., Cantoni G. L. J. Biol. Chem. 1978; 252: 4476
  • Frey P. A. Pyridine Nucleotide Coenzymes, D. Dolphin, R. Poulson, O. Avramovic. Wiley, New York 1987; Vol 2B: 461
  • Schaffner W., Weissmann C. Anal. Biochem. 1973; 56: 502
  • Fujioka M., Takata Y. J. Biol. Chem. 1981; 256: 1631
  • Tsou C. L. Adv. Enzymol 1988; 61: 381
  • Kitz R., Wilson I. B. J. Biol. Chem. 1982; 237: 3245
  • Borchardt R. T., Keller B. T., Patel-Thombre U. J. Biol. Chem. 1984; 259: 4353
  • Abeles R. H., Fish S., Lapinkas B. Biochemistry 1982; 21: 5557
  • Paisley S. D., Hasobe M., Borchardt R. T. Nucleosides and Nucleotides 1989; 8: 689
  • Paisley S. D., Wolfe M. S., Borchardt R. T. J. Med. Chem. 1989; 32: 1415
  • Silverman R. B. Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology. CRC Press, Florida 1988; Vol. 1, Chapter 1
  • Gomi T., Ogawa H., Fujioka M. J. Biol. Chem. 1986; 261: 13422
  • , SAHase incubated with 100 μ DTNB alone was 70% inactivated in 30min. However, the inactivation by DTNB is slower in the presence of 62.5 μM substrate (6 times the Km); under the normal assay conditions, the rate of SAH cleavage at 30min is 75% of the initial rate. Part of this decrease may be due to substrate depletion (about 20% depletion of SAH in 30min in a typical assay)
  • Matusvewska B., Borchardt R. T. J. Biol. Chem. 1987; 262: 265
  • , A possible explanation for the stoichiometry found in two experiments with I and one experiment with II is that recovery of fluoride is less efficient than the recovery of the unreacted inhibitor from the Centricon-30 filtration step used in these experiments. This is most likely due to nonspecific binding of fluoride anion to the protein under the conditions of low ionic strength, since in a control in the absence of protein, there was no difference between the recovery of fluoride and I.
  • de la Haba G., Agostini S., Bozzi A., Merta A., Unson C., Cantoni G. L. Biochemistry 1986; 25: 8337
  • , A mechanism for fluoride anion formation that does not involve nucleophilic attack is as follows: loss of the 2′ proton from the oxidized intermediate IV to give an enediol, tautomerization of the enediol to form a 2′-keto-3′,4′-didehydro-5′-deoxy-5′-fluoro intermediate, and finally elimination of fluoride with the generation of a4,5′-didehydro-2′,3′-diketone. However, this mechanism invokes an unnecessarily large number of steps. Also, there is no evidence to suggest that there is a base in the active site that is positioned for proton abstraction from the 2′ position: Palmer and Abeles12,13 have detected SAHase-catalyzed exchange at only the 4′ position in adenosine and 5′-deoxyadenosine.
  • , The loss of the 3H-labeled adenine by a1,2 syn elimination or by a stepwise process would also be prevented by reduction of the carbonyl group at the 3′ position of an intermediate
  • Massey V., Komai H., Palmer G., Elion G. B. J. Biol. Chem. 1970; 245: 2837

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.