254
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Evaluation of the coronary arteries in the foetus and newborn and their physiologic significance

&
Pages 1042-1047 | Received 08 Oct 2012, Accepted 10 Jan 2013, Published online: 12 Feb 2013

References

  • Hozumi T, Yoshida K, Akasaka T, et al. Non-invasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 1998;32:1251–9
  • Yasuoka K, Harada K, Orino T, et al. Left anterior descending coronary artery flow and its relation to age in children. J Am Echocardiogr 2002;15:69–75
  • Harada K, Tamura M, Orino T, Yasuoka K. Coronary blood flow assessed by transthoracic echocardiography in neonates. Pediatr Cardiol 2001;22:189–93
  • Baschat AA, Genbruch U, Reiss I, et al. Demonstration of fetal coronary blood flow by Doppler ultrasound in relation to arterial and venous flow velocity waveforms and prenatal outcome-the ‘heart-sparing effect’. Ultrasound Obstet Gynecol 1997;8:82–6
  • Rizzo G, Capponi A, Pietrolucci ME, et al. The significance of visualising coronary blood flow in early onset severe growth restricted foetuses with reverse flow in the ductus venosus. J Maternal-Fetal Neonatal Med 2009;22:547–51
  • Chaoui R. Coronary arteries in fetal life: physiology, malformations and the ‘heart-sparing effect’. Acta Paediatr Suppl 2004;446:6–12
  • Oskarsson G, Pesonen E. Coronary blood flow in healthy neonates: effects of left ventricular function and mass. Pediatr Cardiol 2004;25:11–16
  • Sehgal A, Wong F, Mehta S. Reduced cardiac output and its correlation with coronary blood flow and troponin in asphyxiated infants treated with therapeutic hypothermia. Eur J Pediatr. 2012;171:1511–17
  • Oberhoffer R, Lang D, Feilen K. The diameter of coronary arteries in infants and children without heart disease. Eur J Pediatr 1989;148:389–92
  • Pesonen E, Hirvonen J, Karkola K, et al. Dimensions of the coronary arteries in children. Ann Med 1991;23:85–8
  • Afonso S, Bandow GT, Rowe GG. Indomethacin and the prostaglandin hypothesis of coronary blood flow regulation. J Physiol 1974;241:299–308
  • Sehgal A, Ramsden CA, McNamara PJ. Indomethacin impairs coronary perfusion in infants with haemodynamically significant ductus arteriosus. Neonatology 2012;101:20–7
  • Larsen BT, Gutterman DD, Sato A, et al. Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res. 2008;102:59–67
  • Olson KR, Whitfield NL. Hydrogen sulphide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 2010;12:1219–34
  • Arnold G, Kosche F, Miessner E, et al. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflugers Arch Gesamte Physiol Menschen Tiere 1968;299:339–56
  • El-Khuffash AF, Molloy EJ. Influence of a patent ductus arteriosus on cardiac troponin T levels in preterm infants. J Pediatr. 2008;153:350–3
  • Way GL, Pierce JR, Wolfe RR, et al. ST depression suggesting subendocardial ischemia in neonates with respiratory distress syndrome and patent ductus arteriosus. J Pediatr 1979;95:609--611
  • Chaoui R. The fetal ‘heart-sparing effect’ detected by the assessment of coronary blood flow: a further ominous sign of fetal compromise. Ultrasound Obstet Gynecol 1996;7:5–9
  • Baschat AA, Muench MV, Gembruch U. Coronary artery blood flow velocities in various fetal conditions. Ultrasound Obstet Gynecol 2003;21:426–9
  • Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed 2007;92:62–7
  • Thornburg KL, Reller MD. Coronary flow regulation in the fetal sheep. Am J Physiol 1999;277:R1249–60
  • Rowe GG, Afonso S. Systemic and coronary hemodynamic effects of intracoronary administration of prostaglandins E1 and E2. Am. Heart J 1974;88:51–60
  • Baschat AA, Genbruch U, Gortner L, et al. Coronary artery blood flow visualization signifies haemodynamics deterioration in growth-restricted foetuses. Ultrasound Obstet Gynecol 2000;16:425–31
  • Makikallio K, Vuolteenaho O, Jouppila P, Rasanen J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation 2002;105:2058–63
  • Chaoui R, Tennstedt C, Goldner B, Bollmann R. Prenatal diagnosis of ventriculo-coronary communications in a second trimester fetus using transvaginal and transabdominal color Doppler sonography. Ultrasound Obstet Gynecol 1997;9:194–7
  • Chaoui R, Tennstedt C, Goldner B. Prenatal diagnosis of ventriculocoronary arterial fistula in a fetus with hypoplastic left heart syndrome and aortic atresia. Ultrasound Obstet Gynecol 2002;20:75–8
  • Rizzo G, Capponi A, Pietrolucci ME, et al. The significance of visualising coronary blood flow in early onset severe growth restricted foetuses with reverse flow in the ductus venosus. J Maternal–Fetal Neonatal Med 2009;22:547–51
  • Fusejima K. Non-invasive measurement of coronary artery blood flow using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 1987;10:1024–31
  • Noori S, Friedlich P, Seri I, Wong P. Changes in myocardial function and haemodynamics after ligation of the ductus arteriosus in preterm infants. J Pediatr. 2007;150:597–602
  • Sehgal A, McNamara PJ. Coronary artery perfusion and myocardial performance after patent ductus arteriosus ligation. J Thorac Cardiovasc Surg. 2012;143:1271–8
  • Coombs RC, Morgan MEI, Durbin GM, et al. Gut blood flow velocities in the newborn: effects of patent ductus arteriosus and indomethacin. Arch Dis Child 1990;65:1067–71
  • Cowan F. Indomethacin, patent ductus arteriosus and cerebral blood flow. J Pediatr 1986;109:341–3
  • Klautz RJM, van Bel F, Teitel DF, et al. Myocardial perfusion and performance after indomethacin administration in newborn lambs. Peadiatr Res 1993;33:295–301
  • Harling S, Oskarsson G, Gudmundsson S, Pesonen E. Acute decrease of coronary flow after indomethacin delivery in newborn lambs. Acta Paediatr 2007;96:1460–3
  • Suner S, Jay G. Carbon monoxide has direct toxicity on the myocardium distinct from effects of hypoxia in an ex vivo rat heart model. Acad Emerg Med 2008;15:59–65
  • Zhang RY, Du JB, Sun Y, et al. Sulfur dioxide derivatives depress L-type calcium channel in rat cardiomyocytes. Clin Exp Pharmacol Physiol 2011;38:366–72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.