451
Views
65
CrossRef citations to date
0
Altmetric
Research Article

Effect of Mobile Phone Exposure on Apoptotic Glial Cells and Status of Oxidative Stress in Rat Brain

, , , &
Pages 342-354 | Published online: 17 Dec 2009

References

  • Adey, W. R., Byus, C. V., Cain, C. D., et al. (1999). Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats chronically-exposed to 836 MHz modulated microwaves. Radiat Res. 152:293–302.
  • Adey, W. R., Byus, C. V., Cain, C. D., et al. (2000). Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats exposed to frequency-modulated microwave fields. Cancer Res. 60:1857–1863.
  • Ameison, J. C., Capron, A. (1991). Cell dysfunction and depletion in AIDS: The programmed cell death hypothesis. Immunol. Today 12:102–105.
  • Belyaev, I. Y., Hillert, L., Protopopova, M., et al. (2005). 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1Foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 26:173–184.
  • Belyaev, I., Koch, C. B., Terenius, O., et al. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27:295–306.
  • Belyaev, I. (2005). Non-thermal biological effects of microwaves. Microwave Rev. 11:13–29.
  • Dasdag, S., Akdag, M.Z., Aksen, F., et al. (2004). 900 MHz GSM mobile phone exposure affect the rat brain? Electromagn. Biol. Med. 23:201–214.
  • de Pomerai, D., Daniells, C., David, H., et al. (2000). Non-thermal heat-shock response to microwaves. Nature 405:417–418.
  • Ding, G. R., Nakahara, T., Tian, F. R., et al. (2001). Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem. Biophys. Res. Commun. 286:953–957.
  • Erel, O. (2004a). A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 37:112–119.
  • Erel, O. (2004b). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37:277–285.
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 38:1103–1111.
  • Ferlini, C., DeAngelis, C., Biselli, R., et al. (1999). Sequence of metabolic changes during X-ray induced apoptosis. Exp. Cell. Res. 247:160–167.
  • Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196:143–152.
  • Hadjiloucas, I., Gilmore, A. P., Bundred, N. J., Streuli, C. H. (2001). Assessment of apoptosis in human breast tissue using an antibody against the active form of caspase 3: Relation to tumour histopathological characteristics. Brit. J. Cancer 85:1522–1526.
  • Hardell, L., Eriksson, M., Carlberg, M., et al. (2005). Use of cellular or cordless telephones and the risk for non-Hodgkin's lymphoma. Int. Arch. Occup. Environ. Health 78:625–632.
  • Hardell, L., Mild, K. H., Carlberg, M. (2002). Case-control study on the use of cellular and cordless phones and the risk for malignant brain tumours. Int. J. Radiat. Biol. 78:931–936.
  • Hardell, L., Mild, K. H., Carlberg, M. (2003). Further aspects on cellular and cordless telephones and brain tumours. Int. J. Oncol. 22:399–407.
  • Higashikubo, R., Culbreth, V. O., Spitz, D. R., et al. (1999). Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor. Radiat. Res. 152:665–671.
  • Imaida, K., Taki, M., Watanabe, S., et al. (1998a). The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium term liver bioassay. Jpn. J. Cancer Res. 89:995–1002.
  • Imaida, K., Taki, M., Yamaguchi, T., et al. (1998b). Lack of promoting effects of the electromagnetic near-field used for cellular phones (929,2 MHz) on rat liver carcinogenesis in medium- term liver bioassay. Carcinogenesis 19:311–314.
  • Jaattela, M. (1999). Escaping cell death: Survival proteins in cancer. Exp. Cell. Res. 248:30–43.
  • Junkersdorf, B., Bauer, H., Gutzeit, H. O. (2000). Electromagnetic fields enhance the stress response at elevated temperatures in the nematode Caenorhabditis elegans. Bioelectro-magnetics 21:100–106.
  • Kundi, M., Mild, K., Hardell, L., Mattsson, M. O. (2004). Mobile telephones and cancer-a review of epidemiological evidence. J. Toxicol. Environ. Health B Crit. Rev. 7:351–384.
  • Lantow, M., Lupke, M., Frahm, J., et al. (2006). ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat. Environ. Biophys. 45:55–62.
  • Lee, J. S., Huang, T. Q., Lee, J. J., et al. (2005). Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int. J. Radiat. Biol. 81:781–792.
  • Leszczynski, D., Joenvaara, S., Reivinen, J., Kuokka, R. (2002). Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 70:120–129.
  • Lin, H., Opler, M., Head, M., et al. (1997). Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J. Cell. Biochem. 66:482–488.
  • Lonn, S., Ahlbom, A., Hall, P., Feychting, M. (2004). Mobile phone use and the risk of acoustic neuroma. Epidemiology 15:653–659.
  • Lowry, O. H., Rosebrough, N. L., Farr, A. L., Randall, R. F. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Mangiacasale, R., Tritarelli, A., Sciamanna, I., et al. (2001). Normal and cancer-prone human cells respond differently to extremely low frequency magnetic fields. FEBS Lett. 487:397–403.
  • Mashevich, M., Folkman, D., Kesar, A., et al. (2003). Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24:82–90.
  • Merola, P., Marino, C., Lovisolo, G. A., et al. (2006). Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromagnetics 27:164–171.
  • Olsson, G., Belyaev, I., Helleday, T., Harms-Ringdahl, M. (2001). ELF electromagnetic field affects proliferation of SPD8/V79 Chinese hamster cells but does not interact with intragenic recombination. Mutat. Res. 493:55–66.
  • Ozben, T. (2007). Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharmaceut. Sci. 96:2181–2196.
  • Peinnequin, A., Piriou, A., Mathieu, J., et al. (2000). Non-thermal effects of continuous 2.45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochemistry 51:157–161.
  • Peyman, A., Rezazadehl, A. A., Gabriel, C. (2001). Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Phys. Med. Biol. 46:1617–1629.
  • Repacholi, M. H., Basten, A., Gebski, V., et al. (1997). Lymphomas in Eμ-pim 1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat. Res. 147:630–640.
  • Salford, L. G., Brun, A., Persson, B. R. R., Eberhardt, J. (1993). Experimental studies of brain tumour development during exposure to continuous and pulsed 915 MHz radiofrequency radiation. Bioelectrochem. Bioenerg. 30:313–318.
  • Simko, M., Kriehuber, R., Weiss, D. G., Luben, R. A. (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19:85–91.
  • Sommer, A. M., Streckert, J., Bitz, A. K., et al. (2004). No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice. BMC Cancer 4(77):1–13.
  • Szmigielski, S., Szudzinski, A., Platraszek, A. (1982). Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2,450 MHz microwave radiation. Bioelectromagnetics 3:179–191.
  • Szmigielski, S. (1996). Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci. Total Environ. 180:9–17.
  • Szudzinski, A., Pietraszek, A., Janiak, M., et al. (1982). Acceleration of development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch. Dermatol. Res. 312:274–303.
  • Tian, F., Nakahara, T., Yashida, M., et al. (2002). Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient Xrs5 cells. Biochem. Biophys. Res. Commun. 292:355–361.
  • Valberg, P. A. (1997). Radiofrequency radiation (RFR): The nature of exposure and carcinogenic potential. Cancer Cause Control 8:323–332.
  • WHO. 1993. Environmental Health Criteria 137: Electromagnetic Fields (300 Hz to 300 GHz), Geneva, WHO: 80–180.
  • Xu, G., Zhang, W., Bertram, P., et al. (2004). Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int. J. Oncol. 24:893–900.
  • Yasser, M., Moustafa, R. M., Moustafa, A., et al. (2001). Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharmaceut. Biomed. Anal. 26:605–608.
  • Zook, B. C., Simmens, S. J. (2001). The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats. Radiat. Res. 155:572–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.