144
Views
6
CrossRef citations to date
0
Altmetric
Research Article

ELF Noise Fields: A Review

&
Pages 72-97 | Published online: 13 Aug 2010

References

  • Artur, J. S. C. (2007). COMMENTARY MAPK activation by radio waves. Biochem. J. 405:e5–e6.
  • Berglund, A., Hansson Mild, K., Sandström, M., and Mattsson, M.-O. (1991). Background ELF magnetic fields in incubators. Thirteenth Annual Meeting of the Bioelectromagnetics Society, Abstract, Salt Lake City, UT, June 23–27.
  • Berman, E. L., Chacon, D., House, B. A. et al. (1990). The effects of a pulsed magnetic field on chick embryos. Bioelectromagnetics 11:69–187.
  • Björåsen, A.-M, Sjödin, A., Hansson Mild, K., Mattsson, M.-O. (2004). Sine wave extremely low frequency magnetic fields protect chick embryos against UV-induced death. Electromagn. Biol. Med. 23(2):113–124.
  • Burch, J. B., Reif, J. S., Yost, M. G. et al. (1998). Nocturnal excretion of a urinary melatonin metabolite among electric utility workers. Scand. J. Work, Environ. Health 24:183–189.
  • Burch, J. B., Reif, J. S., Yost, M. G. et al. (1999). Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. Amer. J. Epidemiol. 150:27–36.
  • Chen, G., Upham, B. L., Sun, W. et al. (2000). Effect of electromagnetic field exposure on chemically induced differentiation of Friend erythroleukemia cells. Environ. Health Perspect. 108:967–972.
  • Cress, L. W., Owen, R. D., Desta, A. B. (1999). Ornithine decarboxylase activity in L929 cells following exposure to 60 Hz magnetic fields. Carcinogenesis 20(6):1025–1030.
  • Davanipour, Z., Tseng, C. C., Lee, P. J., Sobel, E. (2007). A case-control study of occupational magnetic field exposure and Alzheimer's disease: results from the California Alzheimer's Disease Diagnosis and Treatment Centers. BMC Neurol. 9:7–13.
  • Delgado J. M. R., Leal, J., Monteagudo, J. L., Gracia, M. G. (1982). Embryological changes induced by weak, extremely low frequency electromagnetic fields. J. Anat. 134:533–551.
  • Desta, A. B., Owen, R. D., Cress, L. W. (1999). Ornithine decarboxylase activity in devloping chick embryos after exposure to 60-Hertz magetic fields. Biochem. Biophys. Res. Commun. 265:211–213.
  • Desta, A. B., Owen, R. D., Cress, L. W. (2003). Non-thermal exposure o radiofrequency energy from digital wireless phones does not affect ornithine decarboxylase activity in L929 cells. Rad. Res. 160:488–491.
  • DiCarlo, A. L., Farrell, J. M., Litovitz, T. A. (1998). A simple experiment to study electromagnetic field effects: protection induced by short-term exposures to 60 Hz magnetic fields. Bioelectromagnetics 19:498–500.
  • DiCarlo, A. L., Hargis, M. T., Penafiel, L. M., Litovitz, T. A. (1999a). Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage. Int. J. Radiat. Biol. 75:1541–1549.
  • DiCarlo, A. L., Farrell, J. M., Litovitz, T. A. (1999b). Myocardial protection conferred by electromagnetic fields. Circulation 99:813–816.
  • DiCarlo, A. L., Litovitz, T. A. (1999). Is genetics the unrecognized confounding factor in bioelectromagnetics? Flock-dependence of fieldinduced anoxia protection in chick embryos. Bioelectrochem. Bioenerg. 48:209–215.
  • DiCarlo, A. L., Mullins, J. M., Litovitz, T. A. (2000a). Electromagnetic field-induced protection against hypoxia exhibits characteristics of temporal sensing. Bioelectrochemistry 52:17–21.
  • DiCarlo, A. L., Mullins, J. M., Litovitz, T. A. (2000b). Thresholds for electromagnetic field-induced hypoxia protection: evidence for a primary electric field effect. Bioelectrochemistry 52:9–6.
  • DiCarlo, A. L., White, N., Guo, F. et al. (2002). Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J. Cell. Biochem. 84:447–454.
  • Farrell, J. M., Barber, M., Doinov, P. et al. (1993). Superposition of a temporally incoherent magnetic field suppresses the change in ornithine decarboxylase activity in developing chick embryos induced by a 60 Hz sinusoidal field. In Blank, M., ed. Electricity and Magnetism in Biology and Medicine ( pp. 342–344). San Francisco: San Francisco Press.
  • Farrell, J. M., Barber, M., Krause, D., Litovitz, T. A. (1997). Effects of low frequency electromagnetic fields on the activity of ornithine decarboxylase in developing chicken embryos. Bioelectrochem. Bioenerg. 43:91–96.
  • Farrell, J. M., Barber, M., Krause, D., Litovitz, T. A. (1998). The superposition of a temporally incoherent magnetic field inhibits 60 Hz induced changes in the ODC activity of developing chick embryos. Bioelectromagnetics 19:53–56.
  • Farrell, J. M., Litovitz, T. L., Penafiel, L. M. et al. (1997). The effect of pulsed and sinusoidal magnetic fields on the morphology of developing chick embryos. Bioelectromagnetics 18:431–438.
  • Fedrowitz, M., Kamino, K., Löscher, W. (2004). Significant differences in the effects of magnetic field exposure on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in two substrains of Sprague-Dawley rats. Cancer Res. 64(1):243–251.
  • Fedrowitz, M., Löscher, W. (2005). Power frequency magnetic fields increase cell proliferation in the mammary gland of female Fischer 344 rats but not various other rat strains or substrains. Oncology 69(6):486–498.
  • Friedman, J., Kraus, S., Hauptman, Y. et al. (2007). Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 405(3):559–568.
  • Gao, X. W., Xu, Z. P., Huo, Y. N. et al. (2004). Noise magnetic fields block co-supression effect induced by power frequency magnetic field and phorbol ester. Zhonghua Yu Fang Yi Xue Za Zhi 38:11–13.
  • Greene, J. J., Skowronski, W. J., Mullins, J. M. et al. (1991). Delineation of electric and magnetic field effects of extremely low frequency electromagnetic radiation on transcription. Biochem. Biophys. Res. Commun. 174:742–749.
  • Girgert, R., Gründker, C., Emons, G., Hanf, V. (2008). Electromagnetic fields alter the expression of estrogen receptor cofactors in breast cancer cells. Bioelectromagnetics 29(3):169–176.
  • Girgert, R., Schimming, H., Korner, W. et al. (2005). Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields. Biochem. Biophys. Res. Commun 336:1144–1149.
  • Hansson Mild, K., Wilén, J., Mattsson, M. O., Simkó, M. (2009). Background ELF magnetic fields in incubators: A factor of importance in cell culture work. Cell Biol. Internat. 33:755–757.
  • Hardell, L., Carlberg, M., Söderqvist, F., Hansson Mild, K. (2008). Meta-analysis of long-term mobile phone use and the association with brain tumours. Int. J. Oncol. 32(5):1097–1103.
  • Heby, O., Marton, L. J., Zardi, L. et al. (1975). Changes in polyamine metabolism in WI38 cells stimulate to proliferate. Exp. Cell. Res. 90:8–14.
  • Höytö, A., Juutilainen, J., Naarala, J. (2007a). Ornithine decarboxylase activity of L929 cells after exposure to continuous wave or 50 Hz modulated radiofrequency radiationa replication study. Bioelectromagnetics 28(7):501–508.
  • Höytö, A., Juutilainen, J., Naarala, J. (2007b). Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int. J. Radiat. Biol. 83(6):367–374.
  • IARC (2002). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 80. Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields. ISSN-13 9789283212805, ISBN-10 9283212800.
  • Ishido, M., Nitta, H., Kabuto, M. (2001). Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. Carcinogenesis 22:1043–1048.
  • Ivancsits, S., Pilger, A., Diem, E. et al. (2005). Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat. Res. 583:184–188.
  • Juutilainen, J., Läärä, E., Saali, K. (1987). Relationshiup between field strength and abnormal development in chick embryous exposed to 50 Hz magnetic fields. Int. J. Radiat. Biol. 52:787–793.
  • Juutilainen, J., Saali, K. (1986). Development of chick embryos in 1 Hz to 100 kHz magnetic fields. Radiat. Environ. Biophys. 25:135–140.
  • Kheifets, L., Monroe, J., Vergara, X. et al. (2008). Occupational electromagnetic fields and leukemia and brain cancer: an update to two meta-analyses. J. Occup. Environ. Med. 50(6):677–688.
  • Ke, X. Q., Sun, W. J., Lu, D. Q. et al. (2008). 50-Hz magnetic fields induces EGF receptor clustering and activates RAS. Int. J. Radiat. Biol. 84(5):413–420.
  • Krause, D., Mullins, J. M., Penafiel, L. M., Nardone, R. M. (1991). Microwave exposure alters the expression of 2-5A-dependent RNase. Radiat. Res. 127:164–170.
  • Krause, D., Skowronski, W. J., Mullins, J. M. et al. (1991. Selective enhancement of gene expression by 60 Hz electromagnetic radiation. In Brighton, C. T., Pollack, S. R., eds. Electromagnetics in Biology and Medicine ( pp. 133–138). San Francisco: San Francisco Press.
  • Lai, H. (2004). Interaction of microwaves and a temporally incoherent magnetic field on spatial learning in the rat. Physiol. Behav. 82:785–789.
  • Lai, H., Singh, N. P. (2005). Interactions of microwaves and a temporally incoherent magnetic field in single and double DNA strand breaks in rat brain cells. Electromagn. Biol. Med. 24:23–29.
  • Lin, H., Goodman, R. (1995). Electric and magnetic noise blocks the 60 Hz magnetic field enhancement of steady state c-myc transcript levels in human leukemia cells. Bioelectrochem. Bioenerg.36:33–37.
  • Litovitz, T. A., Krause, D., Montrose, C. J., Mullins, J. M. (1994). Temporally incoherent magnetic fields mitigate the response of biological systems to temporally coherent magnetic fields. Bioelectromagnetics 15:399–409.
  • Litovitz, T. A., Krause, D., Mullins, J. M. (1991). Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochem. Biophys. Res. Commun. 178:862–865.
  • Litovitz, T. A., Krause, D., Penafiel, M. et al. (1993). The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics 14:395–403.
  • Litovitz, T. A., Montrose, C. J., Doinov, P. (1993). Spatial and temporal coherence affects the response of biological systems to electromagnetic fields. In Blank, M., ed. Electricity and Magnetism in Biology and Medicine ( pp. 339–341). San Francisco: San Francisco Press.
  • Litovitz, T. A., Montrose, C. J., Doinov, P. et al. (1994). Superimposing spatially coherent electromagnetic noise inhibits field-induced abnormalities in developing chick embryos. Bioelectromagnetics 15:105–113.
  • Litovitz, T. A., Penafiel, M., Farrell, J. M. et al. (1997). Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise. Bioelectromagnetics 18:422–430.
  • Litovitz, T. A., Penafiel, M., Krause, D. et al. (1997). The role of temporal sensing in bioelectromagnetic effects. Bioelectromagnetics 18:388–395.
  • Löscher, W. (2001). Do cocarcinogenic effects of ELF electromagnetic fields require repeated long-term interaction with carcinogens? Characteristics of positive studies using the DMBA breast cancer model in rats. Bioelectromagnetics 22:603–614.
  • Mannerling, A. C., Hansson Mild, K., Mattsson, M. O. (2007). Extremely low-frequency magnetic field exposure and protection against UV-induced death in chicken embryos. Electromagn. Biol. Med. 26(2):73–81.
  • Mannerling, A. C., Simko, M., Hansson Mild, K., Mattsson, M. O. (2008). Oxygen radical release in human leukemia cell lines after ELF magnetic field exposure. 30th Annual Meeting of the Bioelectromagnetics Society ( pp. 346–347). San Diego.
  • Martin, A. H., Moses, G. C. (1995). Effectiveness of noise in blocking electromagnetic effects on enzyme activity in the chick embryo. Biochem. Molec. Biol. Int. 36:87–94.
  • Mattsson, M. O., Rehnholm, U., Hansson Mild, K. (1993). Gene expression in tumour cell lines after exposure to a 50 Hz sinusoidal magnetic field. In Blank, M., ed. Electricity and Magnetism in Biology and Medicine ( pp. 500–502). San Francisco: San Francisco Press, Inc.
  • Mullins, J. M., Krause, D., Litovitz, T. A. (1993). Simultaneous application of a spatially coherent noise field blocks the response of cell cultures to a 60 Hz electromagnetic field. In Blank, M., ed. Electricity and Magnetism in Biology and Medicine ( pp. 345–346). San Francisco: San Francisco Press.
  • Mullins, J. M., Litovitz, T. A., Montrose, C. J. (1995). The role of coherence in electromagnetic field-induced bioeffects: the signal-to-noise dilemma. In Blank, M., ed. Electromagnetic Fields, Biological Interactions and Mechanisms ( pp. 319–338). Washington, D.C.: American Chemical Society.
  • Mullins, J. M., Litovitz, T. A., Penafiel, M. et al. (1998). Intermittent noise affects EMF-induced ODC activity. Bioelectrochem. Bioenerg. 44:237–242.
  • Mullins, J. M., Penafiel, L. M., Juutilainen, J., Litovitz, T. A. (1999). Doseresponse of electromagnetic field enhanced ornithine decarboxylase activity. Bioelectrochem. Bioenerg. 48:193–199.
  • Opler, M., Rukenstein, A., Cote, L., Goodman, R. (1997). Reduced dopamine levels in PC12 cells exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 42:235–239.
  • Penafiel, L. M., Litovitz, T. A., Krause, D., Mullins, J. M. (1997). Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics 18:132–141.
  • Raskmark, P., Kwee, S. (1996). The minimizing effect of electromagnetic noise on the changes in cell proliferation caused by ELF magnetic fields. Bioelectrochem. Bioenerg. 40:193–196.
  • Shallom, J. M., Di Carlo, A. L., Ko, D., Penafiel, M., Nakai, A., Litovitz, T. A. (2002). Microwave exposure induces Hsp70 and confers protection against hypoxia in chick embryos. J. Cell. Biochem. 86:490–496.
  • Valtersson, U., Hansson Mild, K., Mattsson, M. O. (1997). Ornithine decarboxylase activity and polyamine levels are different in Jurkat and CEM-CM3 cells after exposure to a 50 Hz magnetic field. Short communication. Bioelectrochem. Bioenerg. 43:169–172.
  • Valtersson, U., Hansson Mild, K., Mattsson, M. O. (1999). Uncharacterized physical parameters can contribute more than magnetic field to ODC activity in vitro. In Bersani, F., ed. Electricity and Magnetism in Biology and Medicine ( pp. 449–452). New York: Kluwer Academic/Plenum Publishers.
  • Xie, L., Chiang, H., Sun, W. J. et al. (2006). GSM1800 MHZ radiofreqeuncy electromagnetic radiation induced clustering af membrane surface receptors and interference by noise mganetic fields. Zhonghua Lao Don Wei Sheng Zhi Ye Bing Za Zhi 24:461–464 ( abstract in English).
  • Yao, K., Wu, W., Wang, K. et al. (2008). Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol. Vis. 19(14):964–969.
  • Yao, K., Wu, W., Yu, Y. et al. (2008). Effect of superposed electromagnetic noise on DNA damage of lens epithelial cells induced by microwave radiation. Invest. Ophthalmol. Vis. Sci. 49:2009–2015.
  • Zeng, Q. L., Chiang, H., Fu, Y. T. et al. (2002). Electromagnetic noise blocks the gap-junctional suppression induced by 50 Hz magnetic field. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 20:243–245.
  • Zeng, Q. L., Ke, X. Q., Gao, X. W. et al. (2006). Noise magnetic fields abolish the gap junction intercellular communication suppression induced by 50 Hz magnetic fields, Bioelectromagnetics 27:274–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.