87
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn chicken embryos

, &
Pages 146-157 | Published online: 23 Aug 2011

References

  • Adey W. R., Byus C. V., Cain C. D., . 2000. Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats exposed to frequency-modulated microwave fields. Cancer Res.. 60:1857–1863.
  • Ankarcrona M., Dypbuki J. M., Bonfoco E., . 1995. Glutamate-induced neurnal death:a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 15:961–973.
  • Auvinen A., Hietanen M., Luukkonen R., . 2002. Brain tumors and salivary gland cancers among cellular telephone users. Epidemiology. 13 3: 356–359.
  • Bawin S. M., Adey W. R.. 1976. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc. Nat. Acad. Sci.. 73 6: 1999–2003.
  • Bawin S. M., Kaczmarek L. K., Adey W. R.. 1975. Effects of modulated VHF fields on the central nervous system. Ann. NY. Acad. Sci.. 247:74–81.
  • Bethwaite P., Cook A., Kennedy J., . 2001. Acute leukemia in electrical workers: a New Zealand case-control study. Cancer Causes Control. 12:683–689.
  • Blackman C. S., Elder J. A., Benane S. G., . Two factors affecting the radiation-induced calcium efflux from brain tissue. Symp. Biol. Eff. Electromag. Waves. Airlie.Va. 1977.
  • Chan W. Y., Lorke D. E., Tiu S. C., . 2002. Proliferation and apoptosis in the developing human neocortex. Anat. Rec.. 267:261–276.
  • Czyz J., Guan K., Zeng Q., . 2004. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics. 25:296–307.
  • Czyz J., Nikolova T., Schuderer J., . 2004. Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells – the role of tumour suppressor p53. Mutat. Res.. 557 1: 63–74.
  • Deans J. K., Powell A. D., Jefferys J. G. R.. 2007. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J. Physiol.. 583 2: 555–565.
  • Delgado J. M. R., Leal J., Monteagudo, . 1982. Embryological changes induced by weak, extremely low frequency electromagnetic fields. J. Anat.. 134:533–551.
  • Dessi F., Charriaut-Marlangue C., Khrestchatisky M., . 1993. Glutamate-induced neurnal death is not a programmed cell death in cerebellar culture. J. Neurochem.. 60:1953–1955.
  • Dibirdik I., Kristupaitis D., Kurosaki T., . 1998. Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for Syk kinase-dependent phospholipase Cgamma2 activation in lymphoma B cells exposed to low energy electromagnetic fields. J. Biol. Chem.. 273:4035–4039.
  • DiCarlo A., Litovitz T. A.. 2000. echanical and electromagnetic induction of protection against oxidative stress. Bioelectrochemistry. 53 1: 87–95.
  • DiCarlo A., White N., Guo F., . 2002. Chronic electromagnetic field exposure increases HSP70 levels and lowers cytoprotection. J. Cell. Biochem.. 84:447–454.
  • Feychting M., Forssen U., Floderus B.. 1997. Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology. 8:384–389.
  • Fujisawa S., Matsuki N., Ikegaya Y.. 2004. Chronometric readout from a memory trace: gamma-frequency field stimulation recruits timed recurrent activity in the rat CA3 network. J. Physiol.. 561:123–131.
  • Goodman R., Blank M.. 2002. Insights into electromagnetic interaction mechanisms. J. Cell Physiol.. 192:16–22.
  • Haas H. L., Jefferys J. G. R.. 1984. Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J. Physiol.. 354:185–201.
  • Hamburger V., Hamilton H. L.. 1951. A series of normal stages in the development of the chick embryo. J. Morphol.. 88:49–92.
  • Ivancsits S., Diem E., Pilger A., . 2002. Induction of DNA strand breaks by intermittent exposure to extremely- low-frequency electromagnetic fields in human diploid fibroblasts. Mutat. Res.. 519 1-2: 1–13.
  • Jefferys J. G. R., Haas H. L.. 1982. Synchronized bursting of CA1 pyramidal cells in the absence of synaptic transmission. Nature. 300:448–450.
  • Jin M., Blank M., Goodman R.. 2000. ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J. Cell Biochem.. 78:371–379.
  • Juutilainen J., Lara E., Saali K.. 1987. Relationship between field strength and abnormal development in chick embryo exposed to 50 Hz magnetic fields. Int. J. Radiat. Biol.. 52:787–793.
  • Kim Y. S.. 1976. Some possible effects of static magnetic fields on cancer. Tower Int. Technomed. Ins. J. Life Sci.. 6:11–28.
  • Kramarenko A. V., Tan U.. 2003. Effects of high-ferequency electromagnetic fields on human EEG: A brain mapping study. Int. J. Neurosci. 113:1007–1019.
  • Kure S., Tominiga T., Yoshimoto T., . 1991. Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem. Biophys. Res. Commun.. 179:39–45.
  • Kuster N., Balzano Q., Lin J. C.. 1997. Mobile Communications Safety. London: Chapman and Hall.
  • Leszczynski D., Joenvaara S., Reivinen J., . 2002. Non-thermal activation of the hsp27/P38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 70 2–3: 120–129.
  • Liburdy R. P.. 1992. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett.. 301:53–59.
  • Lidsky T. I., Schneider J. S.. 2003. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain. 126:5–19.
  • Liu Y., Hong R., Yu Y. M., . 2003. Effects of extremely low frequency electromagnetic fields on apoptosis and cell cycle of mouse brain and liver cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 21 5: 339–341.
  • Lonn S., Klaeboe L., Hall P., . 2004. Incidence trends of adult primary intracerebral tumors in four Nordic countries. Int. J. Cancer. 108:450–455.
  • McFarlane E. H., Dawe G. S., Marks M., . 2000. Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells. Bioelectrochemistry. 52 1: 23–28.
  • Moulder J. E., Foster K. R.. 1995. Biological effects of power-frequency fields as they relate to carcinogenesis. Proc. Soc. Exp. Biol. Med.. 209:309–324.
  • Narita K., Hanakawa K., Kasahara T., . 1997. Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency electric magnetic fields: analysis of the possible mechanisms in in vitro. In Vivo. 11 4: 329–335.
  • Nikolova T., Czyz J., Rolletschek A., . 2005. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J.. 19 12: 1686–1688.
  • Pacinia S., Vannellia G. B., Barni T., . 1999. Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability. Neurosci. Lett.. 267 3,4: 185–188.
  • Pipkin J. L., Hinson W. G., Young J. F., . 1999. Induction of stress proteins by electromagnetic fields in cultured HL- 60 cells. Bioelectromanetrics. 20 6: 347–357.
  • Portera-Cailliau C., Hedreen J. C., Price D. L., . 1995. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci.. 15:3775–3787.
  • Radman T., Su Y., Hi An J., . 2007. Spike timing amplifies the effect of electric fields on neurons: Implications for endogenous field effects. J. Neurosci.. 27 11: 3030–3036.
  • Ratan P. R., Murphy T. H., Baraban J. M.. 1994. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem.. 62:376–379.
  • Repacholi M. H., Basten A., Gebski V., . 1997. Lymphomas in Eμ-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat. Res.. 147 5: 631–640.
  • Salford L. G., Brun A. E., Eberhardt J. L., . 2003. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect.. 111 7: 881–883.
  • Sandstrom M., Hansson-Mild K., Lovtrup S.. 1987. Effects of weak pulsed magnetic field on chick embryogenesis. Proc Int. Sci. Con. University of California, Berkeley, CA.133–148.
  • Saunders R. D., Jefferys J. G. R.. 2002. Weak electric field interactions in the central nervous system. Health Phys.. 83:366–375.
  • Schoen D.. 1996. Annals of conflicting results: looking back on electromagnetic field research. Can. Med. Assoc. J.. 155:1443–1446.
  • Shams Lahijani M., Sharifnia Kh.. 1999. Effects on chick embryos (white leghorn) exposed to 50 Hz alternative electromagnetic fields during different developmental stages. Ir. J. Sci. Technol.. 23 4: 301–305.
  • Shams Lahijani M., Ghafoori M.. 2000. Teratogenic effects of sinusoidal extremely low frequency electromagnetic fields on the morphology of 24 hrs chick (white leghorn) embryos. In. J. Exp. Biol.. 38:692–699.
  • Shams Lahijani M., Rajabi Moham H.. 2000. Teratogenic effects on the morphology and skeletal structure of chick embryos (white leghorn) after exposure to 50 Hz sinusoidal electromagnetic fields. Ir. J. Sci. Technol.. 24 2: 173–182.
  • Shams Lahijani M., Sajadi K.. 2004. Development of preincubated chicken (white leghorn) eggs, following exposure to 50 Hz electromagnetic fields with 1.33–7.32 mT flux ensities. Int. J. Exp. Biol.. 42:858–865.
  • Shams Lahijani M., Ebrahimi Nojooshi S., Siadat S. F.. 2007. Light and electron microscope studies of effects of 50 Hz electromagnetic fields on preincubated chick embryo. Electromag. Biol. Med. 26:83–97.
  • Shams Lahijani M., Minaei Tehrani D., Sabouri E.. 2009. Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white leghorn chicken embryo. Electromag. Biol. Med.. 28 4: 391–413.
  • Sisken B. F., Jacob J. M., Walker J. L.. 1995. Acute treatment with pulsed electromagnetic fields and its effect on fast axonal transport in normal and regenerating nerve. J. Neurosci. Res.. 42:692–699.
  • Sommer A. M., Streckert J., Bitz A. K., . 2004. No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice. BMC Cancer. 4:77–90.
  • Stang A., Anastassiou G., Ahrens W., . 2001. The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiology. 12 1: 7–12.
  • Szmigielski S., Szudzinski A., Pietraszek A., . 1982. Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics. 3 2: 179–191.
  • Tenforde T. S.. 1992. Biological interactions and potential health effects of extremely-low frequency magnetic fields from power lines and other common sources. Ann. Rev. Public Health. 13:173–196.
  • Ubeda A., Trillo M. A., Chacon L., . 1994. Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics. 15 5: 385–398.
  • Utteridge T. D., Gebski V., Finnie J. W., . 2002. Long-term exposure of Eμ-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiat. Res.. 158:357–364.
  • Veneziano P. P.. 1965. The effect of low intensity magnetostatic fields on the growth and orientation of the early embryo of Gallus domesticus. Zoology. 25:4319.
  • Ventura C., Maioli M., Asara Y., . 2004. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J.. 19:155–157.
  • Wetzel B. J., Nindl G., Vesper D. N., . 2001. Electromagnetic field effects: changes in protein phosphorylation in the Jurkat E6.1 cell line. Biomed. Sci. Instr.. 37:203–208.
  • Wilson B. W., Wright C. W., Morris J. E., . 1990. Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J. Pineal Res.. 9:259–269.
  • Woods M., Bobanovic F., Brown D., . 2000. Lyn and Syk tyrosine kinases are not activated in B-lineage lymphoid cells exposed to low-energy electromagnetic fields. FASEB J.. 14:2284–2290.
  • Wu R. Y., Chiang H., Shao B. J., . 1994. Effects of 2.45-GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice. Bioelectromagnetics. 15 6: 531–538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.