369
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes

, , , , &
Pages 77-84 | Received 22 Aug 2013, Accepted 07 Jan 2014, Published online: 05 Feb 2014

References

  • Albertini, A., Zucchini, P., Noera, G., et al. (1999). Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics 20:372–377
  • Barbier, E., Dufy, B., Veyret, B. (1996). Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 17:303–311
  • Barzelai, S., Dayan, A., Feinberg, M. S., et al. (2009). Electromagnetic field at 15.95–16 Hz is cardio protective following acute myocardial infarction. Ann. Biomed. Eng. 37:2093–2104
  • Bassett, C. A., Pilla, A. A., Pawluk, R. J. (1977). A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields: A preliminary report. Clin. Orthop. Relat. Res. 124:128–143
  • Bers, D. M. (2000). Calcium fluxes involved in control of cardiac myocyte contraction. Circ. Res. 87:275–281
  • Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature 415:198–205
  • Bers, D. M. (2008). Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70:23–49
  • Craviso, G. L., Poss, J., Lanctot, C., et al. (2002). Intracellular calcium activity in isolated bovine adrenal chromaffin cells in the presence and absence of 60 Hz magnetic fields. Bioelectromagnetics 23:557–567
  • Cui, Y., Liu, X., Yang, T., et al. (2013). Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium. [Epub ahead of print]. doi: 10.1016/j.ceca.2013.11.002
  • Del, G. E., Preparata, G., Vitiello, G. (1988). Water as a free electric dipole laser. Phys. Rev. Lett. 61:1085–1088
  • DiCarlo, A. L., Farrell, J. M., Litovitz, T. A. (1999). Myocardial protection conferred by electromagnetic fields. Circulation 99:813–816
  • Esmail, M. Y., Sun, L., Yu, L., et al. (2012). Effects of PEMF and glucocorticoids on proliferation and differentiation of osteoblasts. Electromagn. Biol. Med. 31:375–381
  • Fanelli, C., Coppola, S., Barone, R., et al. (1999). Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 13:95–102
  • Focke, F., Schuermann, D., Kuster, N., et al. (2010). DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat. Res. 683:74–83
  • Foletti, A., Lisi, A., Ledda, M., et al. (2009). Cellular ELF signals as a possible tool in informative medicine. Electromagn. Biol. Med. 28:71–74
  • Funk, R. H., Monsees, T., Ozkucur, N. (2009). Electromagnetic effects: From cell biology to medicine. Prog. Histochem. Cytochem. 43:177–264
  • Gölfert, F., Hofer, A., Thümmler, M., et al. (2001). Extremely low frequency electromagnetic fields and heat shock can increase microvesicle motility in astrocytes. Bioelectromagnetics 22:71–78
  • Galvanovskis, J., Sandblom, J., Bergqvist, B., et al. (1999). Cytoplasmic Ca2+ oscillations in human leukemia T-cells are reduced by 50 Hz magnetic fields. Bioelectromagnetics 20:269–276
  • Gangopadhyay, J. P., Ikemoto, N. (2010). Intracellular translocation of calmodulin and Ca2+/calmodulin-dependent protein kinase II during the development of hypertrophy in neonatal cardiomyocytes. Biochem. Biophys. Res. Commun. 396:515–521
  • Goodman, R., Bassett, C., Henderson, A. (1983). Pulsing electromagnetic fields induce cellular transcription. Science 220:1283–1285
  • Goodman, R., Henderson, A. (1988). Exposure of salivary gland cells to low-frequency electromagnetic fields alters polypeptide synthesis. Proc. Natl. Acad. Sci. USA 85:3928–3932
  • Grassi, C., D’Ascenzo, M., Torsello, A., et al. (2004). Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315
  • Grundler, W., Kaiser, F. (1992). Experimental evidence for coherent excitations correlated with cell growth. Nanobiology 1:163–176
  • Grynkiewicz, G., Poenie, M., Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450
  • Ikehara, T., Park, K. H., Yamaguchi, H., et al. (2002). Effects of a time varying strong magnetic field on release of cytosolic free Ca2+ from intracellular stores in cultured bovine adrenal chromaffin cells. Bioelectromagnetics 23:505–515
  • Jandová, A., Hurych, J., Pokorný, J., et al. (2001). Effects of sinusoidal magnetic field on adherence inhibitionv of leukocytes. Electromagn. Biol. Med. 20:397–413
  • Kaiser, F. (1995). Coherent oscillations: their role in the interaction of weak ELM-fields with cellular systems. Neural Network World 5:751–762
  • Karabakhtsiana, R., Broudea, N., Shaltsa, N., et al. (1994). Calcium is necessary in the cell response to EM fields. FEBS Lett. 349:1–6
  • Karimov, A., Reshetnyak, S., Shcheglov, V. (1999). Two mechanisms of electromagnetic-radiation interaction with information-carrying biomacromolecules. J. Russian Laser Res. 20:1–6
  • Kohlhaas, M., Zhang, T., Seidler, T., et al. (2006). Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ. Res. 98:235–244
  • Lacy-Hulbert, A., Metcalfe, J. C., Hesketh, R. (1998). Biological responses to electromagnetic fields. FASEB J. 12:395–420
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75
  • Lindstrom, E., Lindstrom, P., Berglund, A., et al. (1995). Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47
  • Lyle, D. B., Fuchs, T. A., Casamento, J. P., et al. (1997). Intracellular calcium signaling by Jurkat T-lymphocytes exposed to a 60 Hz magnetic field. Bioelectromagnetics 18:439–445
  • Neef, S., Dybkova, N., Sossalla, S., et al. (2010). CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ. Res. 106:1134–1144
  • Ogrodnik, J., Niggli, E. (2010). Increased Ca2+ leak and spatiotemporal coherence of Ca2+ release in cardiomyocytes during beta-adrenergic stimulation. J. Physiol. 588:225–242
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102
  • Pessina, G. P., Aldinucci, C., Palmi, M., et al. (2001). Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells. Bioelectromagnetics 22:503–510
  • Piacentini, R., Ripoli, C., Mezzogori, D., et al. (2008). Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J. Cell. Physiol. 215:129–139
  • Ross, S. M. (1990). Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics 11:27–36
  • Santini, M. T., Ferrante, A., Rainaldi, G., et al. (2005). Extremely low frequency (ELF) magnetic fields and apoptosis: A review. Int. J. Radiat. Biol. 81:1–11
  • Schaeffer, P. J., Desantiago, J., Yang, J., et al. (2009). Impaired contractile function and calcium handling in hearts of cardiac-specific calcineurin b1-deficient mice. Am. J. Physiol. Heart. Circ. Physiol. 297:H1263–H1273
  • Sert, C., Soker, S., Deniz, M., et al. (2011). Intracellular Ca2+ levels in rat ventricle cells exposed to extremely low frequency magnetic field. Electromagn. Biol. Med. 30:14–20
  • Shannon, T. R., Pogwizd, S. M., Bers, D. M. (2003). Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ. Res. 93:592–594
  • Sontag, W. (1998). Action of extremely low frequency electric fields on the cytosolic calcium concentration of differentiated HL-60 cells: Nonactivated cells. Bioelectromagnetics 19:32–40
  • Sun, W., Chiang, H., Fu, Y., et al. (2001). Exposure to 50 Hz electromagnetic fields induces the phosphorylation and activity of stress-activated protein kinase in cultured cells. Electromagn. Biol. Med. 20:415–423
  • Tsong, T. Y. (1992). Molecular recognition and processing of periodic signals in cells: Study of activation of membrane ATPases by alternating electric fields. Biochim. Biophys. Acta 1113:53–71
  • Ventura, C., Maioli, M., Asara, Y., et al. (2005). Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 19:155–157
  • Xu, H., Zhang, Y., Sun, J., et al. (2012). Effect of distinct sources of Ca2+ on cardiac hypertrophy in cardiomyocytes. Electromagn. Biol. Med. 237:271–278
  • Yitzhaki, S. (2011). Weak magnetic field at 16 Hz affects cardiac myocyte Ca2+ transients and reduces cells damage caused by hypoxia. Open Optics J. 5:33–39
  • Zhang, X., Liu, X., Pan, L., et al. (2010). Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem. Biophys. Res. Commun. 396:662–666
  • Zhang, X., Zhang, J., Qu, X., et al. (2007). Effects of different extremely low-frequency electromagnetic fields on osteoblasts. Electromagn. Biol. Med. 26:167–177
  • Zhou, J., Yao, G., Zhang, J., et al. (2002). CREB DNA binding activation by a 50Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca2+ but not PKA, PKC, ERK, or p38 MAPK. Biochem. Biophys. Res. Commun. 296:1013–1018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.