72
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Modulation effect of low-frequency electric and magnetic fields on CO2 production and rates of acetate and pyruvate formation in Saccharomyces cerevisiae cell culture

&
Pages 93-104 | Received 14 Nov 2013, Accepted 05 Mar 2014, Published online: 02 Apr 2014

References

  • Ahuja, Y. R., Vijayashree, B., Saran, R., et al. (1999). In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J. Biochem. Biophys. 36:318–322
  • Adey, W. R. (1993). Biological effects of electromagnetic fields. J. Cell. Biochem. 51:410–416
  • Altman, S. A., Zastawny, T. H., Randers-Eichhorn, L., et al. (1995). Formation of DNA-protein cross-links in cultured mammalian cells upon treatment with iron ions. Free Radic. Biol. Med. 19:897–902
  • Beal, J. B. (2003). Biosystems, Liquid Crystals and Potential effects of Natural & Artificial Electromagnetic Fields (EMFs). Available from: http://www.stealthskater.com/Documents/Consciousness_15.pdf [last accessed Sept 2003]
  • Blank, M. (2012). The Cellular Stress Response: EMF-DNA interaction. Available from: http://www.bioinitiative.org/report/wp-content/uploads/pdfs/sec07_2012_Evidence_for_Stress_Response_Cellular.pdf [last accessed Sept 2013]
  • Blank, M. (2013). EMF's Effect on DNA. Available from: http://stopsmartmetersirvine.com/2013/02/16/dr-martin-blank-emfs-effect-on-dna/ [last accessed Sept 2013]
  • Blumenthal, N. C., Ricci, J., Breger, L., et al. (1997). Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics. 18:264–272
  • Chen, G., Lu, D., Chiang, H., et al. (2012). Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression, Bioelectromagnetics. 33:550–560
  • Cifra, M., Pokorny, J., Jelnek, F., et al. (2009). Vibrations of electrically polar structures in biosystems give rise to electromagnetic field: Theories and experiment. PIERS Proceedings, Moscow, Russia. pp. 138–142
  • Davanipour, Z., Sobel, E., Bowman, J. D., et al. (1997). Amyotrophic lateral sclerosis and occupational exposure to electromagnetic fields. Bioelectromagnetics. 18:28–35
  • Eveson, R. W., Timmel, C. R., Brocklehurst, B., et al. (2000). The effects of weak magnetic fields on radical recombination reactions in micelles. Int. J. Radiat. Biol. 76:1509–1522
  • Fairbairn, D. W., O'Neill, K. L. (1994). The effect of electromagnetic field exposure on the formation of DNA single strand breaks in human cells. Cell Mol. Biol. (Noisy-le-grand) 40:561–567
  • Feychting, M., Jonsson, F., Pedersen, N. L., et al. (2003). Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 14:413–428
  • Fiorani, M., Biagiarelli, B., Vetrano, F., et al. (1997). In vitro effects of 50 Hz magnetic fields on oxidatively damaged rabbit red blood cells. Bioelectromagnetics. 18:125–131
  • Grundler, W., Kaiser, F., Keilmann, F., et al. (1992). Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften. 79:551–559
  • Håkansson, N., Gustavsson, P., Johansen, C., et al. (2003). Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 14:420–428
  • Hood, E. (2004). EMFs and DNA effects: Potential mechanism elucidated. Environ. Health Perspect. 112:A368
  • Ismael, S. J., Callera, F., Garcia, A. B., et al. (1998). Increased dexamethasone-induced apoptosis of thymocytes from mice exposed to long-term extremely low frequency magnetic fields. Bioelectromagnetics. 19:131–135
  • Ivancsits, S., Diem, E., Jahn, O., et al. (2003a). Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int. Arch. Occup. Environ. Health 76:431–436
  • Ivancsits S., Diem E., Jahn O., et al. (2003b). Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech. Ageing Dev. 124:847–850
  • Ivancsits, S., Diem, E., Pilger, A., et al. (2002). Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat. Res. 519:1–13
  • Jajte, J., Zmyślony, M., Palus, J., et al. (2001). Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat. Res. 483:57–64
  • Johansen, C., Olsen, J. H. (1998). Mortality from amyotrophic lateral sclerosis, other chronic disorders, and electric shocks among utility workers. Am. J. Epidemiol. 148:362–368
  • Katsir, G., Parola, A. H. (1998). Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem. Biophys. Res. Commun. 252:753–756
  • Khadir, R., Morgan, J. L., Murray, J. J. (1999). Effects of 60 Hz magnetic field exposure on polymorphonuclear leukocyte activation. Biochim. Biophys. Acta. 1472:359–367
  • Lai, H., Carino, M. A., Horita, A., et al. (1993). Effects of a 60 Hz magnetic field on central cholinergic systems of the rat. Bioelectromagnetics. 14:5–15
  • Lai, H., Singh, N. P. (1997a). Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 18:156–165
  • Lai, H., Singh, N. P. (1997b). Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J. Pineal. Res. 22:152–162
  • Lai, H., Singh, N. P. (2004). Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–694
  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., Schwan, H. P., Eds. Interactions between Electromagnetic Fields and Cells. London: Plenum Press
  • Liboff, A. R., McLeod, B. R. (1988). Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics. 9:39
  • Liboff, A. R. (2009). Electric polarization and the viability of living systems: Ion cyclotron resonance-like interactions, electromagnetic biology and medicine. Electromagn. Biol. Med. 28:124–134
  • Lloyd, D. R., Phillips, D. H., Carmichael, P. L. (1997). Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem. Res. Toxicol. 10:393–400
  • Lonetree, B., Miller, I. (2010). The Sedona effect: Correlations between geomagnetic anomalies, EEG Brainwaves, & Schumann resonance in Sedona vortex areas. Availale from: http://sedonanomalies.com/Sedona%20Effect.htm [last accessed Sept 2013]
  • Lourencini da Silva, R., Albano, F., Lopes dos Santos, L. R., et al. (2000). The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep. 5:299–301
  • Luceri, C., De Filippo, C., Giovannelli, L., et al. (2005). Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes. Radiat. Res. 164:277–285
  • Makarov, V. I. (2013). Reduction of laser-induced retinal injury applying the combination of the 3D variable electric and magnetic fields in vivo. Electromagn. Biol. Med. [Epub ahead of print]. doi: 10.3109/15368378.2013.784980
  • Makarov, V. I., Khmelinskii, I. (2011). FTIR and UV spectroscopy in real-time monitoring of S. cerevisiae cell culture. Electromagn. Biol. Med. 30:181–197
  • McNamee, J. P., Bellier, P. V., McLean, J. R. N., et al. (2002). DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat. Res. 513:121–133
  • Mello Filho, A. C., Meneghini, R. (1984). In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim. Biophys. Acta. 781:56–63
  • Miyakoshi, J., Yoshida, M., Shibuya, K., et al. (2000). Exposure to strong magnetic fields at power frequency potentiates X-ray-induced DNA strand breaks. J. Radiat. Res. 41:293–302
  • Noonan, C. W., Reif, J. S., Yost, M., et al. (2002). Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand. J. Work. Environ. Health. 28:42–48
  • Pronk, J. T., Steensmaysand, H. Y., Vandijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 12:1607–1633
  • Reese, J. A., Jostes, R. F., Frazier, M. E. (1988). Exposure of mammalian cells to 60-Hz magnetic or electric fields: Analysis for DNA single-strand breaks. Bioelectromagnetics. 9:237–247
  • Rothkamm, K., Löbrich, M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc. Natl. Acad. Sci. USA. 100:5057–5062
  • Roy, S., Noda, Y., Eckert, V., et al. (1995). The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field. FEBS Lett. 376:164–166
  • Ruiz-Gomez, M. J., Prieto-Barcia, M. I., Ristori-Bogajo, E., et al. (2004). Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 64:151–155
  • Savitz, D. A., Checkoway, H., Loomis, D. P. (1998). Magnetic field exposure and neurodegenerative disease mortality among electric utility workers. Epidemiology. 9:398–404
  • Schär, P. (2012). Basis & Review of EMF and Advanced Genome Stability Experiments. EMF Health Risk Research Workshop, Centro Stefano Franscini, ETHZ, Monte Verità, October 23
  • Simkó, M., Kriehuber, R., Weiss, D. G., et al. (1998). Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics. 19:85–91
  • Singh, N. P., Graham, M. M., Singh, V., et al. (1995). Induction of DNA single-strand breaks in human lymphocytes by low doses of gamma-rays. Int. J. Radiat. Biol. 68:563–569
  • Singh, N., Lai, H. (1998). 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat. Res. 400:313–320
  • Sivani, S., Sudarsanam, D. (2012). Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystems and ecosystem – A review. Biol. Med. 4:202–216
  • Sobel, E., Davanipour, Z., Sulkava, R., et al. (1995). Occupations with exposure to electromagnetic fields: A possible risk factor for Alzheimer s disease. Am. J. Epidemiol. 142:515–524
  • Svedenstål, B. M., Johanson, K. J., Mattsson, M. O., et al. (1999a). DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines. In Vivo. 13:507–513
  • Svedenstål, B. M., Johanson, K. J., Mild, K. H. (1999b). DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo. 13:551–552
  • Tenforde, T. S., Kaune, W. T. (1987). Interaction of extremely low frequency electric and magnetic fields with humans. Health Phys. 53:585–606
  • University of Washington. (2004). Exposure to low-level magnetic fields causes DNA damage in rat brain cells. Science Daily. Available from: http://www.sciencedaily.com/releases/2004/02/040219075606.htm [last accessed 17 May 2013]
  • Voichuk, S., Gromozova, E. N. (2004). Effect of radiofrequency of electromagnetic radiation on yeast sensitivity to fungicide antibiotics. Microbial Z. 66:69–77
  • Yoshikawa, T., Tanigawa, M., Tanigawa, T., et al. (2000). Enhancement of nitric oxide generation by low frequency electromagnetic field. Pathophysiology. 7:131–135
  • Zmyślony, M., Palus, J., Jajte, J., et al. (2000). DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutat. Res. 453:89–96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.