78
Views
0
CrossRef citations to date
0
Altmetric
Original Article

External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fields

&
Pages 15-29 | Received 08 Jun 2014, Accepted 25 Aug 2014, Published online: 26 Sep 2014

References

  • Al Ghamdi, M. S. (2012). The effect of static electric fields on Drosophila behaviour. University of Southampton, Centre for Biological Sciences [Master's Thesis]. 122p. University of Southampton Research Repository ePrints Soton. Available from: http://eprints.soton.ac.uk/342464/ (accessed September 2014)
  • Alberto, D., Busso, L., Crotti, G., et al. (2008a). Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions. Electromagn. Biol. Med. 27:25–39
  • Alberto, D., Busso, L., Garfagnini, R., et al. (2008b). Effects of extremely low-frequency magnetic fields on L-glutamic acid aqueous solutions at 20, 40, and 60 μT static magnetic fields. Electromagn. Biol. Med. 27:241–253
  • Atli, E., Unlü, H. (2006). The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster. Int. J. Radiat. Biol. 82:435–441
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238
  • Bozcuk, A. N. (1978). The effects of some genotypes on the longevity of imago Drosophila. Exp. Gerontol. 13:279–286
  • Brody, T. B. (1996). The interactive fly: Stages of development and mitotic domains. Available from: http://www.sdbonline.org/sites/fly/aimain/2stages.htm (accessed Dec 2013)
  • Campos-Ortega, J. A., Hartenstein, V. (1985). The Embryonic Development of Drosophila melanogaster. Berlin: Springer-Verlag
  • Colas, J., Launay, J., Maroteaux, L. (1999). Maternal and zygotic control of serotonin biosynthesis are both necessary for Drosophila germband extension. Mech. Dev. 87:67–76
  • Comisso, N., Del Giudice, E., De Ninno, A., et al. (2006). Dynamics of the ion cyclotron resonance effect on amino acids adsorbed at the interfaces. Bioelectromagnetics 27:16–25
  • Costa, M., Sweeton, D., Wieschaus, E. (1993). Gastrulation in Drosophila: Cellular mechanisms of morphogenetic movements. In: Bate, M., Hartenstein, V. The Development of Drosophila melanogaster. Long Island, NY: Cold Spring Harbor Laboratories. pp. 425–465
  • Dalgic, B. S. (2003). The effects of electromagnetic radiation in microwave frequency on longevity of some Drosophila melanogaster mutants [M.Sc. Thesis]. Ankara: Hacettepe University, The Institute for Graduate Studies in Pure and Applied Sciences
  • Del Giudice, E., Fleischmann, M., Preparata, G., Talpo, G. (2002). On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23:522–530
  • Dow Chemical Corporation. (2014). Viscosity of aqueous glycerine solutions. Available from: http://www.dow.com/optim/optim-advantage/physical-properties/viscosity.htm (accessed June 2014)
  • Driever, W., Nüsslein-Volhard, C. (1988). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104
  • Faguy, P. W., Richmond, W. N. (1996). Real-time polarization modulation infrared spectroscopy applied to the study of water and hydroxide ions at electrode surfaces. J. Electroanal. Chem. 410:109–113
  • Foe, V. E. (1998). Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22
  • Foe, V. E., Odell, G. M., Edgar, B. A. (1993). Mitosis and morphogenesis in the drosophila embryo: Point and counterpoint. In: Bate, M., Hartenstein, V. The Development of Drosophila melanogaster. Long Island, NY: Cold Spring Harbor Laboratories. pp. 149–300
  • Gaetini, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human imago cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 82:411–420
  • Goodman, R., Chizmadzhev, Y., Shirley-Henderson, A. (1993). Electromagnetic fields and cells. J. Cell. Biochem. 51:436–441
  • Hernández-Zapata, E., Martínez-Balbuena, L., Santamaría-Holek, I. (2009). Thermodynamics and dynamics of the formation of spherical lipid vesicles. J. Biol. Phys. 35:297–308
  • Johnson, K. J. (1968). Numerical Methods in Chemistry. New York/Basel: Marcel-Dekker Inc. p. 356
  • Kestin, J., Sokolov, M., Wakeham, W. A. (1978). Viscosity of liquid water in the range −8 °C to 160 °C. J. Phys. Chem. 7:941
  • King, R. C. (1970). Ovarian Development in Drosophila melanogaster. New York: Academic Press
  • Kohane, M. J., Tiller, W. (2000). Energy, fitness, and information-augmented electromagnetic fields in Drosophila melanogaster. J. Sci. Explorat. 14:217–231
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems Bioelectromagnetics 12:71–5
  • Liboff, A. R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., Schwan, H. P. Interactions between Electromagnetic Fields and Cells. London: Plenum Press
  • Liboff, A. R. (2006). Electrical treatment of ununited bone fracture and spinal fusion. In: Webster, J. G. Encyclopedia of Medical Devices. 2nd edn. New York: Wiley
  • Liboff, A. R. (2007). The ion cyclotron resonance hypothesis. In: Barnes, F. S., Greenebaum, B. Handbook Bioengineering and Biophysical Aspects of Electromagnetic Fields. 3rd ed. Boca Raton, FL: CRC Press. Chapter 9
  • Liboff, A. R. (2009). Electric polarization and the viability of living systems: Ion cyclotron resonance-like interactions. Electromagn. Biol. Med. 28:124–134
  • Liboff, A. R. (2010). A role for the geomagnetic field in cell regulation. Electromagn. Biol. Med. 29:105–112
  • Liboff, A. R., McLeod, B. R. (1988). Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9:39
  • Makarov, V. I. (2013). Reduction of laser-induced retinal injury applying the combination of the 3D variable electric and magnetic fields in vivo. Electromagn. Biol. Med. 32:49–64
  • Makarov, V. I., Khmelinskii, I. (2011). FTIR and UV spectroscopy in real-time monitoring of S. cerevisiae cell culture. Electromagn. Biol. Med. 30:181–197
  • Makarov, V. I., Khmelinskii, I. (2013). External control of the Drosophila melanogaster lifespan by combination of 3D oscillating low-frequency electric and magnetic fields. Electromagn. Biol. Med. [Epub ahead of print]. doi: 10.3109/15368378.2013.817335
  • Martinez Arias, A. (1993). Development and patterning of the larval epidermis of Drosophila. In: Bate, M., Hartenstein, V. The Development of Drosophila melanogaster. Long Island, NY: Cold Spring Harbor Laboratories. pp. 517–608
  • Nasiadka, A., Dietrich, B. H., Krause, H. M. (2002). Anterior–posterior patterning in the Drosophila embryo. Adv. Dev. Biol. Biochem. 12:156–176
  • Novikov, V. V., Fesenko, E. E. (2001). Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field. Biophysics 46:233–238
  • Onder, B. S., Bozcuk A. N. (2004). The effects of a short-term microwave exposure on the life span Drosophila melanogaster mutants. Hacettepe J. Biol. Chem. 33:111–117
  • Panagopoulos, D. J. (2012). Gametogenesis, embryonic and post-embryonic development of Drosophila melanogaster as a modeling system for the assessment of radiation and environment toxicity. In: Spindler Barth, M. Drosophila melanogaster Life Cycle Genetics. Chapter I. Hauppauge, NY: Nova Science Publisher Inc
  • Panagopoulos, D. J., Karabarbounis, A., Lioliousis, C. (2013). ELF alternating magnetic field decreases reproduction by DNA damage induction. Cell. Biochem. Biophys. 67:703–716
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2004) Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn. Biol. Med. 23:29–43
  • Panagopoulos, D. J., Messini, N., Karabarbounis, A., et al. (2000). A mechanism for action of oscillating electric fields on cells. Biochem. Biophys. Res. Commun. 272:634–640
  • Pay, T. L., Andersen, F. A., Jessup, G. L. (1978). A comparative study of microwave radiation and conventional heating on the reproductive capacity of Drosophila melanogaster. Radiat. Res. 76:271–282
  • Pazur, A. (2004). Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn. Res. Technol. 2:1–18
  • Poulson, D. F. (1950). Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster. Mergen. In: Demerec, M. Biology of Drosophila. New York: Wiley. pp. 168–270
  • Ramirez, E., Monteagudo, J. L., Garcia-Gracia, M., et al. (1983). Oviposition and development of Drosophila modified by magnetic fields. Bioelectromagnetics 4:315–326
  • Roberts, D. B. (ed). (1998). Drosophila – A Practical Approach. 2nd ed. London: Oxford University Press
  • Sonnenblick, B. P. (1950). The early embryology of Drosophila melanogaster. In: Demerec, M. Biology of Drosophila. New York: Wiley. pp. 62–167
  • Szasz, V. G. A., Liboff, A. R. (2008). New theoretical treatment of ion resonance phenomena. Bioelectromagnetics 29:380–386
  • Tipping, D. R., Chapman, K. E., Birley, A. J., et al. (1999). Observations on the effects of low frequency electromagnetic fields on cellular transcription in Drosophila larvae reared in field-free conditions. Bioelectromagnetics 20:129–131
  • Tram, U., Riggs, B., Sullivan, W. (2002). Cleavage and gastrulation in Drosophila embryos. The cytoskeleton guides early embryogenesis in Drosophila. In: Encyclopedia of Life Sciences. New York: Macmillan Publishers Ltd, Nature Publishing Group. pp. 1–7
  • Vincze, G., Szasz, A., Liboff, A. R. (2008). New theoretical treatment of ion resonance phenomena. Bioelectromagnetics 29:380–386
  • Walters, E., Carstensen, E. L. (1987). Test for the effects of 60 Hz magnetic fields on fecundity and development in Drosophila. Bioelectromagnetics 8:351–354
  • Wheeler, M. R., Clayton, F. E. (1965). A new Drosophila culture technique. D. I. S. 40:98
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.