3,591
Views
132
CrossRef citations to date
0
Altmetric
Review Articles

Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation

, , , , &
Pages 186-202 | Received 10 Jan 2015, Accepted 12 Apr 2015, Published online: 07 Jul 2015

References

  • Abdel-Rassoul, G., El-Fateh, O. A., Salem, M. A., et al. (2007). Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology 28:434–440.
  • Abu Khadra, K. M., Khalil, A. M., Abu Samak, M., et al. (2014). Evaluation of selected biochemical parameters in the saliva of young males using mobile phones. Electromagn. Biol. Med. 32:72–76.
  • Agarwal, A., Desai, N. R., Makker, K., et al. (2009). Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study. Fertil. Steril. 92:1318–1325.
  • Akbari, A., Jelodar, G., Nazifi, S. (2014). Vitamin C protects rat cerebellum and encephalon from oxidative stress following exposure to radiofrequency wave generated by BTS antenna mobile. Toxicol. Mechanisms Methods 24:347–352.
  • Al-Damegh, M. A. (2012). Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics 67:785–792.
  • Avci, B., Akar, A., Bilgici, B., et al. (2012). Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats. Int. J. Radiat. Biol. 88:799–805.
  • Ayata, A., Mollaoglu, H., Yilmaz, H. R., et al. (2004). Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J. Dermatol. 31:878–883.
  • Aynali, G., Naziroglu, M., Celik, O., et al. (2013). Modulation of wireless (2.45 GHz)-induced oxidative toxicity in laryngotracheal mucosa of rat by melatonin. Eur. Arch. Oto-Rhino-Laryngol. 270:1695–1700.
  • Balci, M., Devrim, E., Durak, I. (2007). Effects of mobile phones on oxidant/antioxidant balance in cornea and lens of rats. Curr. Eye Res. 32:21–25.
  • Baohong, W., Jiliang, H., Lifen, J., et al. (2005). Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro. Mutat. Res. 578:149–157.
  • Belyaev, I. (2010). Dependence of non-thermal biological effects of microwaves on physical and biological variables: Implications for reproducibility and safety standards. Eur. J. Oncol. Library 5:187–217.
  • Belyaev, I. Y., Koch, C. B., Terenius, O., et al. (2006). Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27:295–306.
  • Bilgici, B., Akar, A., Avci, B., et al. (2013). Effect of 900 MHz radiofrequency radiation on oxidative stress in rat brain and serum. Electromagn. Biol. Med. 32:20–29.
  • Blank, M., Soo, L. (2001). Electromagnetic acceleration of electron transfer reactions. J. Cell Biochem. 81:278–283.
  • Blank, M., Soo, L. (2003). Electromagnetic acceleration of the Belousov–Zhabotinski reaction. Bioelectrochemistry 61:93–97.
  • Bodera, P., Stankiewicz, W., Zawada, K., et al. (2013). Changes in antioxidant capacity of blood due to mutual action of electromagnetic field (1800 MHz) and opioid drug (tramadol) in animal model of persistent inflammatory state. Pharmacol. Rep. 65:421–428.
  • Bohr, H., Bohr, J. (2000a). Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E 61:4310–4314.
  • Bohr, H., Bohr, J. (2000b). Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics 21:68–72.
  • Boldogh, I., Bacsi, A., Choudhury, B. K., et al. (2005). ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J. Clin. Investig. 115:2169–2179.
  • Buchner, K., Eger, H. (2011). [Changes of clinically important neurotransmitters under the influence of modulated RF fields—A long-term study under real-life conditions]. Umwelt -Medizin-Gesellschaft 24:44–57.
  • Budi, A., Legge, F. S., Treutlein, H., et al. (2007). Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B. 111:5748–5756.
  • Burlaka, A., Selyuk, M., Gafurov, M., et al. (2014). Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods. Int. J. Radiat. Biol. 90:357–362.
  • Burlaka, A., Tsybulin, O., Sidorik, E., et al. (2013). Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp. Oncol. 35:219–225.
  • Byus, C. V., Kartun, K., Pieper, S., et al. (1988). Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 48:4222–4226.
  • Calabrese, E. J. (2008). Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27:1451–1474.
  • Campisi, A., Gulino, M., Acquaviva, R., et al. (2010). Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci. Lett. 473:52–55.
  • Caraglia, M., Marra, M., Mancinelli, F., et al. (2005). Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J. Cell. Physiol. 204:539–548.
  • Cardis, E., Deltour, I., Vrijheid, M., et al. (2010). Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Int. J. Epidemiol. 39:675–694.
  • Cenesis, M., Atakisi, O., Akar, A., et al. (2011). Effects of 900 and 1800 MHz electromagnetic field application on electrocardiogram, nitric oxide, total antioxidant capacity, total oxidant capacity, total protein, albumin and globulin levels in guinea pigs. Kafkas Üniv. Vet. Fakültesi Dergisi 17:357–362.
  • Céspedes, O., Ueno, S. (2009). Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics 30:336–342.
  • Cetin, H., Naziroglu, M., Celik, Ö., et al. (2014). Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring. J. Matern.-Fetal Neonat. Med. 72:1915–1921.
  • Chou, C. K., Guy, A. W., Kunz, L. L., et al. (1992). Long-term, low-level microwave irradiation of rats. Bioelectromagnetics 13:469–496.
  • Chu, M. K., Song, H. G., Kim, C., et al. (2011). Clinical features of headache associated with mobile phone use: A cross-sectional study in university students. BMC Neurol. 11:115.
  • Clifford, A., Morgan, D., Yuspa, S. H., et al. (1995). Role of ornithine decarboxylase in epidermal tumorigenesis. Cancer Res. 55:1680–1686.
  • Consales, C., Merla, C., Marino, C., et al. (2012). Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. 2012:683897.
  • Dasdag, S., Akdag, M. Z., Kizil, G., et al. (2012). Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain. Electromagn. Biol. Med. 31:67–74.
  • Dasdag, S., Akdag, M. Z., Ulukaya, E., et al. (2009). Effect of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn. Biol. Med. 28:342–354.
  • Dasdag, S., Bilgin, H., Akdag, M. Z., et al. (2008). Effect of long term mobile phone exposure on oxidative-antioxidative processes and nitric oxide in rats. Biotechnol. Biotechnol. Equip. 22:992–997.
  • Dasdag, S., Zulkuf Akdag, M., Aksen, F., et al. (2003). Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes. Bioelectromagnetics 24:182–188.
  • De Iuliis, G. N., Newey, R. J., King, B. V., et al. (2009). Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 4:e6446.
  • de Souza, F. T., Silva, J. F., Ferreira, E. F., et al. (2014). Cell phone use and parotid salivary gland alterations: No molecular evidence. Cancer Epidemiol. Biomarkers Prevent. 23:1428–1431.
  • Demirel, S., Doganay, S., Turkoz, Y., et al. (2012). Effects of third generation mobile phone-emitted electromagnetic radiation on oxidative stress parameters in eye tissue and blood of rats. Cutan. Ocul. Toxicol. 31:89–94.
  • Desai, N. R., Kesari, K. K., Agarwal, A. (2009). Pathophysiology of cell phone radiation: Oxidative stress and carcinogenesis with focus on male reproductive system. Reprod. Biol. Endocrinol. 7:114.
  • Deshmukh, P. S., Banerjee, B. D., Abegaonkar, M. P., et al. (2013). Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J. Biochem. Biophys. 50:114–119.
  • Diem, E., Schwarz, C., Adlkofer, F., et al. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 583:178–183.
  • Dutta, S. K., Ghosh, B., Blackman, C. F. (1989). Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture. Bioelectromagnetics 10:197–202.
  • Eger, H., Hagen, K., Lucas, B., et al. (2004). [Influence of the proximity of mobile phone base stations on the incidence of cancer]. Environ. Med. Soc. 17:273–356.
  • Enyedi, B., Niethammer, P. (2013). H2O2: A chemoattractant? Methods Enzymol. 528:237–255.
  • Esmekaya, M. A., Ozer, C., Seyhan, N. (2011). 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen. Physiol. Biophys. 30:84–89.
  • Ferreira, A. R., Bonatto, F., de Bittencourt Pasquali, M. A., et al. (2006a). Oxidative stress effects on the central nervous system of rats after acute exposure to ultra high frequency electromagnetic fields. Bioelectromagnetics 27:487–493.
  • Ferreira, A. R., Knakievicz, T., Pasquali, M. A., et al. (2006b). Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring. Life Sci. 80:43–50.
  • Forman, H. J., Ursini, F., Maiorino, M. (2014). An overview of mechanisms of redox signaling. J. Mol. Cell Cardiol. 73:2–9.
  • Friedman, J., Kraus, S., Hauptman, Y., et al. (2007). Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 405:559–568.
  • Furtado-Filho, O. V., Borba, J. B., Dallegrave, A., et al. (2014). Effect of 950 MHz UHF electromagnetic radiation on biomarkers of oxidative damage, metabolism of UFA and antioxidants in the livers of young rats of different ages. Int. J. Radiat. Biol. 90:159–168.
  • Gandhi, O. P., Morgan, L. L., de Salles, A. A., et al. (2012). Exposure limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagn. Biol. Med. 31:34–51.
  • Garaj-Vrhovac, V., Fucic, A., Horvat, D. (1992). The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat. Res. 281:181–186.
  • Garaj-Vrhovac, V., Gajski, G., Pažanin, S., et al. (2011). Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int. J. Hyg. Environ. Health. 214:59–65.
  • Garson, O. M., McRobert, T. L., Campbell, L. J., et al. (1991). A chromosomal study of workers with long-term exposure to radio-frequency radiation. Med. J. Austral. 155:289–292.
  • Georgiou, C. D. (2010). Oxidative stress-induced biological damage by low-level EMFs: Mechanism of free radical pair electron spin-polarization and biochemical amplification. Eur. J. Oncol. 5:63–113.
  • Goodman, R., Blank, M. (2002). Insights into electromagnetic interaction mechanisms. J. Cell Physiol. 192:16–22.
  • Griendling, K. K., Sorescu, D., Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ. Res. 86:494–501.
  • Guler, G., Tomruk, A., Ozgur, E., et al. (2012). The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int. J. Radiat. Biol. 88:367–373.
  • Guney, M., Ozguner, F., Oral, B., et al. (2007). 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: Protection by vitamins E and C. Toxicol. Ind. Health 23:411–420.
  • Gürler, H. Ş., Bilgici, B., Akar, A. K., et al. (2014). Increased DNA oxidation (8-OHdG) and protein oxidation (AOPP) by low level electromagnetic field (2.45 GHz) in rat brain and protective effect of garlic. Int. J. Radiat. Biol. 90:892–896.
  • Guzy, R. D., Schumacker, P. T. (2006). Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91:807–819.
  • Hallberg, O., Oberfeld, G. (2006). Letter to the editor: Will we all become electrosensitive? Electromagn. Biol. Med. 25:189–191.
  • Halliwell, B. (1991). Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 91:14S–22S.
  • Halliwell, B. (2007). Biochemistry of oxidative stress. Biochem. Soc. Trans. 35:1147–1150.
  • Halliwell, B., Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol. 142:231–255.
  • Hamzany, Y., Feinmesser, R., Shpitzer, T., et al. (2013). Is human saliva an indicator of the adverse health effects of using mobile phones? Antioxid .Redox. Signal. 18:622–627.
  • Hardell, L., Carlberg, M. (2009). Mobile phones, cordless phones and the risk for brain tumours. Int. J. Oncol. 35:5–17.
  • Hardell, L., Carlberg, M., Hansson Mild, K. (2005). Case-control study on cellular and cordless telephones and the risk for acoustic neuroma or meningioma in patients diagnosed 2000–2003. Neuroepidemiology 25:120–128.
  • Hardell, L., Carlberg, M., Hansson Mild, K., et al. (2011). Case-control study on the use of mobile and cordless phones and the risk for malignant melanoma in the head and neck region. Pathophysiology 18:325–333.
  • Hardell, L., Carlberg, M., Ohlson, C. G., et al. (2007). Use of cellular and cordless telephones and risk of testicular cancer. Int. J. Androl. 30:115–122.
  • Hardell, L., Carlberg, M., Soderqvist, F., et al. (2007). Long-term use of cellular phones and brain tumours: Increased risk associated with use for  >  or  =  0 years. Occup. Environ. Med. 64:626–632.
  • Hardell, L., Eriksson, M., Carlberg, M., et al. (2005). Use of cellular or cordless telephones and the risk for non-Hodgkin's lymphoma. Int. Arch. Occup. Environ. Health 78:625–632.
  • Hayden, M. S., Ghosh, S. (2011). NF-kappa B in immunobiology. Cell Res. 21:223–244.
  • Hong, M. N., Kim, B. C., Ko, Y. G., et al. (2012). Effects of 837 and 1950 MHz radiofrequency radiation exposure alone or combined on oxidative stress in MCF10A cells. Bioelectromagnetics 33:604–611.
  • Hook, G. J., Spitz, D. R., Sim, J. E., et al. (2004). Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields. Radiat. Res. 162:497–504.
  • Hou, Q., Wang, M., Wu, S., et al. (2014). Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells. Electromagn. Biol. Med. 34:85–92.
  • Hoyto, A., Juutilainen, J., Naarala, J. (2007). Ornithine decarboxylase activity is affected in primary astrocytes but not in secondary cell lines exposed to 872 MHz RF radiation. Int. J. Radiat. Biol. 83:367–374.
  • Hyland, G. J. (2000). Physics and biology of mobile telephony. Lancet 356:1833–1836.
  • ICNIRP. (1998). Guidelines for limiting exposure to time-varying elecrtic, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • Ilhan, A., Gurel, A., Armutcu, F., et al. (2004). Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin. Chim. Acta. 340:153–162.
  • Inoue, M., Sato, E. F., Nishikawa, M., et al. (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 10:2495–2505.
  • Jelodar, G., Akbari, A., Nazifi, S. (2013). The prophylactic effect of vitamin C on oxidative stress indexes in rat eyes following exposure to radiofrequency wave generated by a BTS antenna model. Int. J. Radiat. Biol. 89:128–131.
  • Jelodar, G., Nazifi, S., Akbari, A. (2013). The prophylactic effect of vitamin C on induced oxidative stress in rat testis following exposure to 900  MHz radio frequency wave generated by a BTS antenna model. Electromagn. Biol. Med. 32:409–416.
  • Jing, J., Yuhua, Z., Xiao-qian, Y., et al. (2012). The influence of microwave radiation from cellular phone on fetal rat brain. Electromagn. Biol. Med. 31:57–66.
  • Johansson, O. (2006). Electrohypersensitivity: State-of-the-art of a functional impairment. Electromagn. Biol. Med. 25:245–258.
  • Johansson, O., Gangi, S., Liang, Y., et al. (2001). Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs – results from open-field provocation experiments. J. Cutan. Pathol. 28:513–519.
  • Kahya, M. C., Nazıroğlu, M., Çiğ, B. (2014). Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol. Trace Elem. Res. 160:285–293.
  • Kang, K. A., Lee, H. C., Lee, J. J., et al. (2013). Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. J. Radiat. Res. (Published online):rrt116.
  • Kerbacher, J. J., Meltz, M. L., Erwin, D. N. (1990). Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat. Res. 123:311–319.
  • Kerman, M., Senol, N. (2012). Oxidative stress in hippocampus induced by 900 MHz electromagnetic field emitting mobile phone: Protection by melatonin. Biomed. Res.. 23:147–151.
  • Kesari, K. K., Kumar, S., Behari, J. (2010). Mobile phone usage and male infertility in Wistar rats. Indian J. Exp. Biol. 48:987–992.
  • Kesari, K. K., Kumar, S., Behari, J. (2011). 900-MHz microwave radiation promotes oxidation in rat brain. [Research Support, Non-U.S. Gov't]. Electromagn. Biol. Med. 30:219–234.
  • Kesari, K. K., Meena, R., Nirala, J., et al. (2013). Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain. Cell Biochem. Biophys. 68:347–358.
  • Khalil, A. M., Abu Khadra, K. M., Aljaberi, A. M., et al. (2014). Assessment of oxidant/antioxidant status in saliva of cell phone users. Electromagn. Biol. Med. 32:92–97.
  • Khalil, A. M., Gagaa, M. H., Alshamali, A. M. (2012). 8-Oxo-7, 8-dihydro-2'-deoxyguanosine as a biomarker of DNA damage by mobile phone radiation. Hum. Exp. Toxicol. 31:734–740.
  • Kim, J. Y., Hong, S. Y., Lee, Y. M., et al. (2008). In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. [Research Support, Non-U.S. Gov't]. Environ. Toxicol.. 23:319–327.
  • Kismali, G., Ozgur, E., Guler, G., et al. (2012). The influence of 1800 MHz GSM-like signals on blood chemistry and oxidative stress in non-pregnant and pregnant rabbits. Int. J. Radiat. Biol. 88:414–419.
  • Koc, A., Unal, D., Cimentepe, E. (2013). The effects of antioxidants on testicular apoptosis and oxidative stress produced by cell phones. Turk. J. Med. Sci. 43:131–137.
  • Koylu, H., Mollaoglu, H., Ozguner, F., et al. (2006). Melatonin modulates 900 Mhz microwave-induced lipid peroxidation changes in rat brain. Toxicol. Ind. Health 22:211–216.
  • Koyu, A., Ozguner, F., Yilmaz, H., et al. (2009). The protective effect of caffeic acid phenethyl ester (CAPE) on oxidative stress in rat liver exposed to the 900 MHz electromagnetic field. Toxicol. Ind. Health 25:429–434.
  • Kumar, S., Nirala, J. P., Behari, J., et al. (2014). Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J. Exp. Biol. 52:890–897.
  • Lai, H., Singh, N. P. (1996). Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 69:513–521.
  • Lai, H., Singh, N. P. (1997). Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 18:446–454.
  • Lantow, M., Lupke, M., Frahm, J., et al. (2006a). ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat. Environ. Biophys. 45:55–62.
  • Lantow, M., Schuderer, J., Hartwig, C., et al. (2006b). Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation. Radiat. Res. 165:88–94.
  • Litovitz, T. A., Krause, D., Penafiel, M., et al. (1993). The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics 14:395–403.
  • Litovitz, T. A., Penafiel, L. M., Farrel, J. M., et al. (1997). Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise. Bioelectromagnetics 18:422–430.
  • Liu, C., Duan, W., Xu, S., et al. (2013a). Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol. Lett. 218:2–9.
  • Liu, C., Gao, P., Xu, S.-C., et al. (2013b). Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: A protective role of melatonin. Int J Radiat Biol. 89:993–1001.
  • Liu, Y., Fiskum, G., Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80:780–787.
  • Low, H., Crane, F. L., Morre, D. J. (2012). Putting together a plasma membrane NADH oxidase: a tale of three laboratories. Int. J. Biochem. Cell Biol. 44:1834–1838.
  • Lu, Y. S., Huang, B. T., Huang, Y. X. (2012). Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation. Oxid. Med. Cell Longev. 2012:740280.
  • Luo, Y.-p., Ma, H.-R., Chen, J.-W., et al. (2014). [Effect of American Ginseng Capsule on the liver oxidative injury and the Nrf2 protein expression in rats exposed by electromagnetic radiation of frequency of cell phone]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chin. J. Integr. Tradit. Western Med. 34:575–580.
  • Luukkonen, J., Hakulinen, P., Maki-Paakkanen, J., et al. (2009). Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat. Res. 662:54–58.
  • Maes, A., Collier, M., Verschaeve, L. (2000). Cytogenetic investigations on microwaves emitted by a 455.7 MHz car phone. Folia Biol. 46:175–180.
  • Maes, W. (2005). [Stress Caused by Electromagnetic Fields and Radiation]. Neubeuern, Germany: IBN.
  • Mailankot, M., Kunnath, A. P., Jayalekshmi, H., et al. (2009). Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics 64:561–565.
  • Manta, A. K., Stravopodis, D. J., Papassideri, I. S., et al. (2013). Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF. Electromagn. Biol. Med. 33:118–131.
  • Marino, A. A., Carrubba, S., Frilot, C., et al. (2009). Evidence that transduction of electromagnetic field is mediated by a force receptor. Neurosci. Lett. 452:119–123.
  • Marjanovic, A. M., Pavicic, I., Trosic, I. (2014). Cell oxidation–reduction imbalance after modulated radiofrequency radiation. Electromagn. Biol. Med. (Published online). 13:1–6.
  • Marzook, E. A., Abd El Moneim, A. E., Elhadary, A. A. (2014). Protective role of sesame oil against mobile base station-induced oxidative stress. J. Radiat. Res. Appl. Sci. 7:1–6.
  • Meena, R., Kumari, K., Kumar, J., et al. (2013). Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn. Biol. Med. 33:81–91.
  • Megha, K., Deshmukh, P. S., Banerjee, B. D., et al. (2012). Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J. Exp. Biol. 50:889–896.
  • Meral, I., Mert, H., Mert, N., et al. (2007). Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 1169:120–124.
  • Motawi, T., Darwish, H., Moustafa, Y., et al. (2014). Biochemical modifications and neuronal damage in brain of young and adult rats after long-term exposure to mobile phone radiations. Cell Biochem. Biophys. 70:845–855.
  • Moustafa, Y. M., Moustafa, R. M., Belacy, A., et al. (2001). Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharm. Biomed. Anal. 26:605–608.
  • Nagata, M. (2005). Inflammatory cells and oxygen radicals. Curr. Drug Targets 4:503–504.
  • Naziroglu, M., Celik, O., Ozgul, C., et al. (2012a). Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol. Behav. 105:683–692.
  • Naziroglu, M., Cig, B., Dogan, S., et al. (2012b). 2.45-Gz wireless devices induce oxidative stress and proliferation through cytosolic Ca(2)(+) influx in human leukemia cancer cells. Int. J. Radiat. Biol. 88:449–456.
  • Naziroglu, M., Gumral, N. (2009). Modulator effects of L-carnitine and selenium on wireless devices (2.45 GHz)-induced oxidative stress and electroencephalography records in brain of rat. Int. J. Radiat. Biol. 85:680–689.
  • Nguyen, H. L., Zucker, S., Zarrabi, K., et al. (2011). Oxidative stress and prostate cancer progression are elicited by membrane-type 1 matrix metalloproteinase. Mol. Cancer Res. 9:1305–1318.
  • Ni, S., Yu, Y., Zhang, Y., et al. (2013). Study of oxidative stress in human lens epithelial cells exposed to 1.8 GHz radiofrequency fields. PLoS One. 8:e72370.
  • Okayama, Y. (2005). Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets 4:517–519.
  • Oksay, T., Naziroğlu, M., Doğan, S., et al. (2014). Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia 46:65–72.
  • Oktem, F., Ozguner, F., Mollaoglu, H., et al. (2005). Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: Protection by melatonin. Arch. Med. Res. 36:350–355.
  • Oral, B., Guney, M., Ozguner, F., et al. (2006). Endometrial apoptosis induced by a 900-MHz mobile phone: Preventive effects of vitamins E and C. Adv. Ther. 23:957–973.
  • Oshino, N., Jamieson, D., Sugano, T., et al. (1975). Optical measurement of catalase-hydrogen peroxide intermediate (compound-i) in liver of anesthetized rats and its implication to hydrogen-peroxide production in situ. Biochem. J. 146:67–77.
  • Ott, M., Gogvadze, V., Orrenius, S., et al. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922.
  • Ozguner, F., Altinbas, A., Ozaydin, M., et al. (2005a). Mobile phone-induced myocardial oxidative stress: Protection by a novel antioxidant agent caffeic acid phenethyl ester. Toxicol. Ind. Health. 21:223–230.
  • Ozguner, F., Bardak, Y., Comlekci, S. (2006). Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: A comparative study. Mol. Cell Biochem. 282:83–88.
  • Ozguner, F., Oktem, F., Ayata, A., et al. (2005b). A novel antioxidant agent caffeic acid phenethyl ester prevents long-term mobile phone exposure-induced renal impairment in rat. Prognostic value of malondialdehyde, N-acetyl-beta-D-glucosaminidase and nitric oxide determination. Mol. Cell Biochem. 277:73–80.
  • Ozgur, E., Guler, G., Seyhan, N. (2010). Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants N-acetyl cysteine and epigallocatechin-gallate. Int. J. Radiat. Biol. 86:935–945.
  • Ozgur, E., Kismali, G., Guler, G., et al. (2013). Effects of prenatal and postnatal exposure to gsm-like radiofrequency on blood chemistry and oxidative stress in infant rabbits, an experimental study. Cell Biochem. Biophys. 67:743–751.
  • Özorak, A., Nazıroğlu, M., Çelik, Ö., et al. (2013). Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring. Biol. Trace Elem. Res. 156:221–229.
  • Panagopoulos, D. J., Karabarbounis, A., Margaritis, L. H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102.
  • Panagopoulos, D. J., Messini, N., Karabarbounis, A., et al. (2000). A mechanism for action of oscillating electric fields on cells. Biochem. Biophys. Res. Commun. 272:634–640.
  • Paulraj, R., Behari, J., Rao, A. R. (1999). Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian J. Biochem. Biophys. 36:337–340.
  • Pavicic, I., Trosic, I. (2010). Interaction of GSM modulated RF radiation and macromolecular cytoskeleton structures. Paper presented at the 6th International Workshop on Biological Effects of Electromagnetic Fields.
  • Pilla, A. A. (2012). Electromagnetic fields instantaneously modulate nitric oxide signaling in challenged biological systems. Biochem. Biophys. Res. Commun. 426:330–333.
  • Qin, F., Yuan, H., Nie, J., et al. (2014). [Effects of nano-selenium on cognition performance of mice exposed in 1800 MHz radiofrequency fields]. Wei sheng yan jiu = J. Hygiene Res. 43:16–21.
  • Ragy, M. M. (2014). Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn. Biol. Med. (Published online).:1–6.
  • Ralph, S. J., Rodríguez-Enríquez, S., Neuzil, J., et al. (2010). The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy. Mol. Aspects Med. 31:145–170.
  • Rao, V. S., Titushkin, I. A., Moros, E. G., et al. (2008). Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: Elucidation of calcium pathways. Radiat. Res. 169:319–329.
  • Repacholi, M. H., Basten, A., Gebski, V., et al. (1997). Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat. Res. 147:631–640.
  • Ruediger, H. W. (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 16:89–102.
  • Sadetzki, S., Chetrit, A., Jarus-Hakak, A., et al. (2008). Cellular phone use and risk of benign and malignant parotid gland tumors – A nationwide case-control study. Am. J. Epidemiol. 167:457–467.
  • Saikhedkar, N., Bhatnagar, M., Jain, A., et al. (2014). Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol. Res. 36:1072–1079.
  • Santini, R., Santini, P., Danze, J. M., et al. (2002). Study of the health of people living in the vicinity of mobile phone base stations: 1. Influences of distance and sex. Pathol. Biol. 50:369–373.
  • Sato, Y., Akiba, S., Kubo, O., et al. (2011). A case-case study of mobile phone use and acoustic neuroma risk in Japan. Bioelectromagnetics 32:85–93.
  • Sefidbakht, Y., Moosavi-Movahedi, A. A., Hosseinkhani, S., et al. (2014). Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells. Photochem. Photobiol. Sci. 13:1082–1092.
  • Shahin, S., Singh, V. P., Shukla, R. K., et al. (2013). 2.45 GHz microwave irradiation-induced oxidative stress affects implantation or pregnancy in mice, Mus musculus. Appl. Biochem. Biotechnol. 169:1727–1751.
  • Sharma, V. P., Singh, H. P., Kohli, R. K., et al. (2009). Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci. Total Environ. 407:5543–5547.
  • Sies, H. (2014). Role of metabolic H2O2 generation: Redox signalling and oxidative stress. J. Biol. Chem. 289:8735–8741.
  • Singh, H. P., Sharma, V. P., Batish, D. R., et al. (2012). Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ. Monitor. Assess. 184:1813–1821.
  • Sokolovic, D., Djindjic, B., Nikolic, J., et al. (2008). Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J. Radiat. Res. (Tokyo). 49:579–586.
  • Sokolovic, D., Djordjevic, B., Kocic, G., et al. (2013). Melatonin protects rat thymus against oxidative stress caused by exposure to microwaves and modulates proliferation/apoptosis of thymocytes. Gen. Physiol. Biophys. 32:79–90.
  • Suleyman, D., M. Zulkuf, A., Feyzan, A., et al. (2004). Does 900 MHZ GSM mobile phone exposure affect rat brain? Electromagn. Biol. Med.. 23:201–214.
  • Szmigielski, S., Szudzinski, A., Pietraszek, A., et al. (1982). Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics 3:179–191.
  • Tice, R. R., Hook, G. G., Donner, M., et al. (2002). Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 23:113–126.
  • Tkalec, M., Malaric, K., Pevalek-Kozlina, B. (2007). Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci. Total. Environ. 388:78–89.
  • Tkalec, M., Stambuk, A., Srut, M., et al. (2013). Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 90:7–12.
  • Tök, L., Nazıroğlu, M., Doğan, S., et al. (2014). Effects of melatonin on Wi-Fi-induced oxidative stress in lens of rats. Indian J. Ophthalmol. 62:12–15.
  • Toler, J. C., Shelton, W. W., Frei, M. R., et al. (1997). Long-term, low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency radiation. Radiat. Res. 148:227–234.
  • Tomruk, A., Guler, G., Dincel, A. S. (2010). The influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits. Cell. Biochem. Biophys. 56:39–47.
  • Tsybulin, O., Sidorik, E., Brieieva, O., et al. (2013). GSM 900 MHz cellular phone radiation can either stimulate or depress early embryogenesis in Japanese quails depending on the duration of exposure. Int. J. Radiat. Biol. 89:756–763.
  • Tsybulin, O., Sidorik, E., Kyrylenko, S., et al. (2012). GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn. Biol. Med. 31:75–86.
  • Türedi, S., Hancı, H., Topal, Z., et al. (2014). The effects of prenatal exposure to a 900-MHz electromagnetic field on the 21-day-old male rat heart. Electromagn. Biol. Med. (Published online).1–8.
  • Turker, Y., Naziroglu, M., Gumral, N., et al. (2011). Selenium and L-carnitine reduce oxidative stress in the heart of rat induced by 2.45-GHz radiation from wireless devices. Biol. Trace Elem. Res. 143:1640–1650.
  • Vaks, V. L., Domrachev, G. A., Rodygin, Y. L., et al. (1994). Dissociation of water by microwave radiation. Radiophys. Quant. Electron. 37:85–88.
  • Valko, M., Leibfritz, D., Moncol, J., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44–84.
  • Valko, M., Rhodes, C. J., Moncol, J., et al. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160:1–40.
  • Wang, X., Sharma, R. K., Gupta, A., et al. (2003). Alterations in mitochondria membrane potential and oxidative stress in infertile men: A prospective observational study. Fertil. Steril. 80:844–850.
  • Wolf, R., Wolf, D. (2007). Increased incidence of cancer near a cell-phone transmitted station. In F. Columbus (Ed.), Trends in Cancer Prevention New York: Nova Science Publishers, Inc. pp. 1–8.
  • Xu, S., Zhou, Z., Zhang, L., et al. (2010). Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain. Res. 1311:189–196.
  • Yakymenko, I., Sidorik, E., Kyrylenko, S., et al. (2011). Long-term exposure to microwave radiation provokes cancer growth: Evidences from radars and mobile communication systems. Exp. Oncol. 33:62–70.
  • Yakymenko, I., Sidorik, E., Tsybulin, O., et al. (2011). Potential risks of microwaves from mobile phones for youth health. Environ. Health 56:48–51.
  • Yurekli, A. I., Ozkan, M., Kalkan, T., et al. (2006). GSM base station electromagnetic radiation and oxidative stress in rats. Electromagn. Biol. Med. 25:177–188.
  • Zhao, T. Y., Zou, S. P., Knapp, P. E. (2007). Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412:34–38.
  • Zmyślony, M., Politanski, P., Rajkowska, E., et al. (2004). Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 25:324–328.
  • Zotti-Martelli, L., Peccatori, M., Maggini, V., et al. (2005). Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat. Res. 582:42–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.