1,708
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Measuring T-cell responses against LCV and CMV in cynomolgus macaques using ELISPOT: Potential application to non-clinical testing of immunomodulatory therapeutics

, , , , , & show all
Pages 35-43 | Received 25 Nov 2012, Accepted 07 Jan 2013, Published online: 06 Mar 2013

References

  • Aarntzen, E. H., Srinivas, M., de Wilt, J. H., et al. (2011). Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proc. Natl. Acad. Sci. USA 108:18396–18399
  • Afif, W., and Loftus, E. V. Jr (2009). Safety profile of IBD therapeutics: infectious risks. Gastroenterol. Clin. North Am. 38:691–709
  • Ambagala, A. P., Marsh, A., Chan, J., et al. (2011). Isolation and characterization of cynomolgus macaque (Macaca fascicularis) cytomegalovirus (CyCMV). Virology 412:125–135
  • Bhaduri-McIntosh, S., and Miller, G. (2006). Cells lytically infected with Epstein-Barr virus are detected and separable by immunoglobulins from EBV-seropositive individuals. J. Virol. Meth. 137:103–114
  • Brennan, F. R., Mroton, L. D., Spindeldreher, S., et al. (2010). Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2:233–255
  • Budde, M. L., Wiseman, R. W., Karl, J. A., et al. (2010). Characterization of Mauritian cynomolgus macaque major histocompatibility complex Class I haplotypes by high-resolution pyrosequencing. Immunogenetics 62:773–780
  • Burwitz, B. J., Pendley, C. J., Greene, J. M., et al. (2009). Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex Class I alleles that restrict simian immunodeficiency virus-specific CD8+ T-cells. J. Virol. 83:6011–6019
  • Carville, A., and Mansfield, K. G. (2008). Comparative pathobiology of macaque lymphocrypto-viruses. Comp. Med. 58:57–67
  • Fishman, J. A. (2007). Infection in solid-organ transplant recipients. New Engl. J. Med. 357:2601–2614
  • Fogg, M. H., Garry, D., Awad, A., et al. (2006). The BZLF1 homolog of an Epstein-Barr-related γ herpesvirus is a frequent target of the CTL response in persistently infected rhesus macaques. J. Immunol. 176:3391–3401
  • Fogg, M. H., Kaur, A., Cho, Y. G., and Wang, F. (2005). The CD8+ T-cell response to an Epstein-Barr virus-related γ herpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue. J. Virol. 79:12681–12691
  • Gentile, G., and Foa, R. (2011). Viral infections associated with the clinical use of monoclonal antibodies. Clin. Microbiol. Infect. 17:1769–1775
  • Gottschalk, S., Rooney, C. M., and Heslop, H. E. (2005). Post-transplant lymphoproliferative disorders. Annu. Rev. Med. 56:29–44
  • Gradoville, L., Kwa, D., El-Guindy, A., and Miller, G. (2002). Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J. Virol. 76:5612–5626
  • Haque, T., Wilkie, G. M., Taylor, C., et al. (2002). Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T-cells. Lancet. 360:436–442
  • Haustein, S. V., Kolterman, A. J., Sunblad, J. J., et al. (2008). Non-human primate infections after organ transplantation. ILAR J. 49:209–219
  • Hislop, A. D., Taylor, G. S., Sauce, D., and Rickinson, A. B. (2007). Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25:587–617
  • Kamar, N., Glander, P., Nolting, J., et al. (2006). Effect of mycophenolate mofetil monotherapy on T-cell functions and inosine monophosphate dehydrogenase activity in patients undergoing a kidney transplantation. Transplant. Proc. 38:2292–2294
  • Kamperschroer, C., Kaur, A., and Lebrec, H. (2012). A summary of meeting proceedings for ‘Measuring immune responses in non-human primates for drug development opportunities and challenges for predicting human efficacy and immunotoxicity’. J. Immunotoxicol. 9:108–120
  • Kaur, A., Hale, C. L., Noren, B., et al. (2002). Decreased frequency of cytomegalovirus (CMV)-specific CD4+ T lymphocytes in simian immunodeficiency virus-infected rhesus macaques: inverse relationship with CMV viremia. J. Virol. 76:3646–3658
  • Kaur, A., Kassis, N., Hale, C. L., et al. (2003). Direct relationship between suppression of virus-specific immunity and emergence of cytomegalovirus disease in simian AIDS. J. Virol. 77:5749–5758
  • Klupp, J., Dambrin, C., Hibi, K., et al. (2003). Treatment by mycophenolate mofetil of advanced graft vascular disease in non-human primate recipients of orthotopic aortic allografts. Am. J. Transplant. 3:817–829
  • Kotton, C. N. (2010). Management of cytomegalovirus infection in solid organ transplantation. Nat. Rev. Nephrol. 6:711–721
  • Lee, C. L., Jiang, P. P., Sit, W. H., and Wan, J. M. (2007). Proteome of human T-lymphocytes with treatment of cyclosporine and polysaccharopeptide: analysis of significant proteins that manipulate T-cells proliferation and immunosuppression. Int. Immunopharmacol. 7:1311–1324
  • Lowenberg, M., Stahn, C., Hommes, D. W., and Buttgereit, F. (2008). Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids 73:1025–1029
  • Lowenberg, M., Verhaar, A. P., van den Brink, G. R., and Hommes, D. W. (2007). Glucocorticoid signaling: a non-genomic mechanism for T-cell immunosuppression. Trends Mol. Med. 13:158–163
  • Major, E. O. (2010). Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu. Rev. Med. 61:35–47
  • Malek, T. R. (2008). The biology of IL-2. Annu. Rev. Immunol. 26:453–479
  • McCutcheon, M., Wehner, N., Wensky, A., et al. (1997). A sensitive ELISPOT assay to detect low-frequency human T-lymphocytes. J. Immunol. Meth. 210:149–166
  • Moghaddam, A., Rosenzweig, M., Lee-Parritz, D., et al. (1997). An animal model for acute and persistent Epstein-Barr virus infection. Science 276:2030–2033
  • Mori, T., and Kato, J. (2010). Cytomegalovirus infection/disease after hematopoietic stem cell transplantation. Int. J. Hematol. 91:588–695
  • Murali-Krishna, K., Atman, J. D., Suresh, M., et al. (1998). Counting antigen-specific CD8 T-cells: a re-evaluation of bystander activation during viral infection. Immunity 8:177–187
  • Nashan, B., Gaston, R., Emery, V., et al. (2012). Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation 93:1075–1085
  • O’Conor, S. L., Blasky, A. J., Pendley, C. J., et al. (2007). Comprehensive characterization of MHC Class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 59:449–462
  • Pitcher, C. J., Hagen, S. I., Walker, J. M., et al. (2002). Development and homeostasis of T-cell memory in rhesus macaque. J. Immunol. 168:29–43
  • Ransom, J. T. (1995). Mechanism of action of mycophenolate mofetil. Ther. Drug Monit. 17:681–684
  • Rivailler, P., Carville, A., Kaur, A., et al. (2004). Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104:1482–1489
  • Rychly, D. J., and DiPiro, J. T. (2005). Infections associated with tumor necrosis factor-α antagonists. Pharmacotherapy 25:1181–1192
  • Sagedal, S., Hartmann, A., Nordal, K. P., et al. (2004). Impact of early cytomegalovirus infection and disease on long-term recipient and kidney graft survival. Kidney Int. 66:329–337
  • Schmidtko, J., Wang, R., Wu, C. L., et al. (2002). Post-transplant lymphoproliferative disorder associated with an Epstein-Barr-related virus in cynomolgus monkeys. Transplantation 73:1431–1439
  • Smets, F., and Sokal, E. M. (2002). Epstein-Barr virus-related lymphoproliferation in children after liver transplant: role of immunity, diagnosis, and management. Pediatr. Transplant. 6:280–287
  • Steininger, C. (2007). Clinical relevance of cytomegalovirus infection in patients with disorders of the immune system. Clin. Microbiol. Infect. 13:953–963
  • Tan, L. C., Gudgeon, N., Annels, N. E., et al. (1999). A re-evaluation of the frequency of CD8+ T-cells specific for EBV in healthy virus carriers. J. Immunol. 162:1827–1835
  • Vallejo, C., Rios, E., de la Serna, J., et al. (2011). Incidence of cytomegalovirus infection and disease in patients with lymphoproliferative disorders treated with alemtuzumab. Exp. Rev. Hematol. 4:9–16
  • van Baarle, D., Hovenkamp, E., Callan, M. F., et al. (2001). Dysfunctional Epstein-Barr virus (EBV)-specific CD8+ T-lymphocytes and increased EBV load in HIV-1 infected individuals progressing to AIDS-related non-Hodgkin lymphoma. Blood 98:146–155
  • Waldrop, S. L., Pitcher, C. J., Peterson, D. M., et al. (1997). Determination of antigen-specific memory/effector CD4+ T-cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 99:1739–1750
  • Waller, E. C., Day, E., Sissons, J. G., and Wills, M. R. (2008). Dynamics of T-cell memory in human cytomegalovirus infection. Med. Microbiol. Immunol. 197:83–96
  • Woodrick, R. S., and Ruderman, E. M. (2011). Safety of biologic therapy in rheumatoid arthritis. Nat. Rev. Rheumatol. 7:639–652
  • Yue, Y., and Barry, P. A. (2008). Rhesus cytomegalovirus a non-human primate model for the study of human cytomegalovirus. Adv. Virus Res. 72:207–226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.