214
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The toxicity evaluation of nano-trititanate with bactericidal properties in vitro

, , , , , , & show all
Pages 327-337 | Received 20 Jul 2010, Accepted 17 Mar 2011, Published online: 09 May 2011

References

  • Arata Y, Fujita M, Ohtani K, Kijima S, Kato JY. 2000. Cdk2-dependent and -independent pathways in E2F-mediated S phase induction. Journal of Biological Chemistry 275:6337–6345.
  • Bartek J, Lukas J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122.
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicolog Sci 77:347–357.
  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E. 2006. The potential risks of nanomaterials: A review carried out for ECETOC. Particle Fibre Toxicol 3:11.
  • Busino L, Chiesa M, Draetta GF, Donzelli M. 2004. Cdc25A phosphatase: Combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23:2050–2056.
  • Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD. 1999. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782.
  • Contour-Galcera MO, Sidhu A, Prevost G, Bigg D, Ducommun B. 2007. What's new on CDC25 phosphatase inhibitors. Pharmacol Therapeut 115:1–12.
  • Dileonardo A, Linke SP, Clarkin K, Wahl GM. 1994. DNA-damage triggers a prolonged p53-dependent G(1) arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Develop 8:2540–2551.
  • Dingman J. 2008. Nanotechnology: Its impact on food safety. J Environ Health 70:47–50.
  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. 2002. The pulmonary toxicology of ultrafine particles. J Aerosol Med-Deposit Clearance Effects Lung 15:213–220.
  • Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W. 2000. Ultrafine particles: mechanisms of lung injury. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering. Science 358:2741–2748.
  • Eldeiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Fujishima A, Rao TN, Tryk DA. 2000. Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21.
  • Giaccia AJ, Kastan MB. 1998. The complexity of p53 modulation: Emerging patterns from divergent signals. Genes Develop 12:2973–2983.
  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV. 2005. Research strategies for safety evaluation of nanomaterials. Part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicolog Sci 88:12–17.
  • Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ. 2010. Cellular toxicity of TiO(2) nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res. (DOI: 10.1007/s12011-010-8707-0).
  • Kim B, Kim D, Cho D, Cho S. 2003. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281.
  • Kipen HM, Laskin DL. 2005. Smaller is not always better: Nanotechnology yields nanotoxicology. Am J Physiol-Lung Cellular Molec Physiol 289:L696–697.
  • Lee CK, Liu SS, Chen HC. 2009. Application of hydrothermal method derived titanate nanotubes as adsorbents. Recent Pat Nanotechnol 3:203–212.
  • Liang SH, Clarke MF. 2001. Regulation of p53 localization. Eur J Biochem 268:2779–2783.
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352.
  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, Lukas L. 2000. Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Niida H, Nakanishi M. 2006. DNA damage checkpoints in mammals. Mutagenesis 21:3–9.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Prives C, Hall PA. 1999. The P53 pathway. J Pathol 187:112–126.
  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH. 2009. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914.
  • Suetake J, Nosaka AY, Hodouchi K, Matsubara H, Nosaka Y. 2008. Characteristics of titanate nanotube and the states of the confined sodium ions. J Phys Chem C 112:18474–18482.
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schieatl RH. 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789.
  • Vousden KH. 2000. p53: Death star. Cell 103:691–694.
  • Wang DA, Zhou F, Wang CW, Liu WM. 2008. Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Micropor Mesopor Mater 116:658–664.
  • Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li Y.F, Jiao F, Zhao YL, Chai ZF. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185.
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 230:90–104.
  • Wu D, Liu J, Zhao XN, Li AD, Chen YF, Ming NB. 2006. Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem Mater 18:547–553.
  • Yu HG, Yu JG, Cheng B. 2006. Preparation, characterization and photocatalytic activity of novel TiO2 nanoparticle-coated titanate nanorods. J Molec Catalysis A-Chem 253:99–106.
  • Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ. 2003. Formation mechanism of H2Ti3O7 nanotubes. Phys Rev Lett 91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.