819
Views
96
CrossRef citations to date
0
Altmetric
Original Article

Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages

, , , , , , , & show all
Pages 259-273 | Received 22 Jun 2011, Accepted 14 Dec 2011, Published online: 26 Jan 2012

References

  • Al-Rawi M, Diabaté S, Weiss C. 2011. Uptake and intracellular localization of submicron and nano-sized SiO(2) particles in HeLa cells. Arch Toxicol 85:813–826.
  • Alam J, Wicks C, Stewart D, Gong P, Touchard C, Otterbein S, 2000. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 275:27694–27702.
  • Allison AC, Harington JS, Birbeck M. 1966. An examination of the cytotoxic effects of silica on macrophages. J Exp Med 124:141–154.
  • Arnold R, Humbert B, Werchau H, Gallati H, Konig W. 1994. Interleukin-8, interleukin-6, and soluble tumour necrosis factor receptor type I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus. Immunology 82:126–133.
  • Arts JH, Muijser H, Duistermaat E, Junker K, Kuper CF. 2007. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food Chem Toxicol 45:1856–1867.
  • Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, 2006. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11.
  • Chang JS, Chang KL, Hwang DF, Kong ZL. 2007. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068.
  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:241–258.
  • Cho EC, Glaus C, Chen J, Welch MJ, Xia Y. 2010. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16:561–573.
  • Cho WS, Choi M, Han BS, Cho M, Oh J, Park K, 2007. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175:24–33.
  • Choi SJ, Oh JM, Choy JH. 2009. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471.
  • Clift MJ, Bhattacharjee S, Brown DM, Stone V. 2010. The effects of serum on the toxicity of manufactured nanoparticles. Toxicol Lett 198:358–365.
  • Cohn EJ, Strong LE, Hughes WL, Mulford DJ, Ashworth JN, Melin M, Taylor HL. 1946. Preparation and properties of serum and plasma proteins; a system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J Am Chem Soc 68:459–475.
  • Donaldson K, Brown D, Clouter A, Duffin R, Macnee W, Renwick L, 2002. The pulmonary toxicology of ultrafine particles. J Aerosol Med 15:213–220.
  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, 2007. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100:303–315.
  • Farokhzad OC, Langer R. 2009. Impact of nanotechnology on drug delivery. ACS Nano 3:16–20.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Gaestel M, Kotlyarov A, Kracht M. 2009. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 8:480–499.
  • Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF. 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3:4.
  • Gurr JR, Wang AS, Chen CH, Jan KY. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73.
  • Harley JD, Margolis J. 1961. Haemolytic activity of colloidal silica. Nature 189:1010–1011.
  • Hildebrand H, Mackenzie K, Kopinke FD. 2009. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions. Environ Sci Technol 43:3254–3259.
  • Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, 2010. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10.
  • Johnston CJ, Driscoll KE, Finkelstein JN, Baggs R, O'reilly MA, Carter J, 2000. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56:405–413.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. 2009. Identification of the mechanisms that drive the toxicity of TiO(2) particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33.
  • Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, 2008. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health A 71:478–485.
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.
  • Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, 2011. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol 8:6.
  • Kittler S. 2010. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20:512–518.
  • Kolling A, Ernst H, Rittinghausen S, Heinrich U, Pott F. 2008. Comparison of primary lung tumor incidences in the rat evaluated by the standard microscopy method and by multiple step sections. Exp Toxicol Pathol 60:281–288.
  • Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. 2010. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–9518.
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. 2007. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163.
  • Lin W, Huang YW, Zhou XD, Ma Y. 2006. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259.
  • Lison D, Thomassen LC, Rabolli V, Gonzalez L, Napierska D, Seo JW, 2008. Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104:155–162.
  • Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, 2009. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117:241–247.
  • Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, 2010. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022.
  • Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, 2011. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 32:547–555.
  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534.
  • Monteiller C, Tran L, Macnee W, Faux S, Jones A, Miller B, 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615.
  • Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, 2010. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31:6833–6842.
  • Nalcaci OO, Akten D, Bockhorn H. 2010. Effect of precursor concentration on the formation of titania particles in a low pressure hydrogen flame. X International Conference on Nanostructured Materials Proceedings, Rome, Italy, pp 91.
  • Nalcaci OO, Ruzin E, Bockhorn H. 2009. Synthesis of nano-sized iron oxide particles in low pressure hydrogen flames. European Aerosol Conference Proceedings, Karlsruhe, Germany, pp 48.
  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39.
  • Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • OECD 2010. Series on the Safety of Manufactured Nanomaterials. Environment Directorate, OECD
  • Orr GA, Chrisler WB, Cassens KJ, Tan R, Tarasevich BJ, Markillie LM., 2010. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology 5:296–311
  • Pandurangi RS, Seehra MS, Razzaboni BL, Bolsaitis P. 1990. Surface and bulk infrared modes of crystalline and amorphous silica particles: a study of the relation of surface structure to cytotoxicity of respirable silica. Environ Health Perspect 86:327–336.
  • Park EJ, Park K. 2009. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25.
  • Paur HR, Baumann W, Mätzing H, Seifert H. 2005. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation. Nanotechnology 16:S354–S361.
  • Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H. 2008. Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68:129–137.
  • Pulskamp K, Diabaté S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74.
  • Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C. 2012. Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 208:41–50.
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, 2006. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185.
  • SCCP 2007. Safety of nanomaterials in cosmetic products. Scientific Committee on Consumer Products.
  • Simon-Deckers A, Gouget B, Mayne-L'hermite M, Herlin-Boime N, Reynaud C, Carriere M. 2008. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253:137–146.
  • Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, 2006. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420.
  • Singh S, Shi T, Duffin R, Albrecht C, Van Berlo D, Höhr D, 2007. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222:141–151.
  • Slowing II, Wu CW, Vivero-escoto JL, Lin VS. 2009. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small 5:57–62.
  • Soenen SJ, De Cuyper M. 2010. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine (Lond) 5:1261–1275.
  • Soto K, Garza KM, Murr LE. 2007. Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3:351–358.
  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, 2004. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984.
  • Sydlik U, Bierhals K, Soufi M, Abel J, Schins RP, Unfried K. 2006. Ultrafine carbon particles induce apoptosis and proliferation in rat lung epithelial cells via specific signaling pathways both using EGF-R. Am J Physiol Lung Cell Mol Physiol 291:L725–L733.
  • Treuel L, Malissek M, Gebauer JS, Zellner R. 2010. The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem 11:3093–3099.
  • Tyagi AK, Chavan SV, Sastry PU. 2006. Deagglomeration and fractal behavior of Y2O3 nano-phase powders. Scr Mater 55:569–572.
  • Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. 2008. Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol Lung Cell Mol Physiol 294:L358–L367.
  • Warheit DB, Mchugh TA, Hartsky MA. 1995. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand J Work Environ Health 21(Suppl 2):19–21.
  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–569.
  • Winter M, Beer HD, Hornung V, Krämer U, Schins RP, Förster I. 2010. Activation of the inflammasome by amorphous silica and TiO(2) nanoparticles in murine dendritic cells. Nanotoxicology 5:326–340.
  • Wooldridge MS. 1998. Gas-phase combustion synthesis of particles. Pror Energy Combust Sci 24:63–87.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Yang X, Liu J, He H, Zhou L, Gong C, Wang X, 2010. SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7:1.
  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci USA 107:19449–19454.
  • Yu KO. 2009. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanoparticle Res 11:12–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.