715
Views
125
CrossRef citations to date
0
Altmetric
Original Article

An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures

, , , , , , , , , & show all
Pages 1338-1350 | Received 20 Jul 2012, Accepted 02 Oct 2012, Published online: 08 Nov 2012

References

  • Ahrens TJ. 1995. Global earth physics: a handbook of physical constants. American Geophysical Union: Washington DC.
  • Anjilvel S, Asgharian B. 1995. A multiple-path model of particle deposition in the rat lung. Toxicol Sci 28:41–50.
  • Asgharian B. 2001. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol 34:8.
  • Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L. 2011. Ce(3)+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5:4537–4549.
  • Cohen J, Deloid G, Pyrgiotakis G, Demokritou P. 2013. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–431.
  • Dao NN, Luu MD, Nguyen QK, Kim BS. 2011. UV absorption by cerium oxide nanoparticles/epoxy composite thin films. Adv Nat Sci Nanosci Nanotechnol 2:045013.
  • Demokritou P, Buchel R, Molina RM, Deloid GM, Brain JD, Pratsinis SE. 2010. Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhal Toxicol 22(Suppl 2):107–116.
  • Fischer HC, Chan WC. 2007. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571.
  • Gangwal S, Brown JS, Wang A, Houck KA, Dix DJ, Kavlock RJ, et al. 2011. Informing selection of nanomaterial concentrations for ToxCast in vitro testing based on occupational exposure potential. Environ Health Perspect 119:1539–1546.
  • Gass S, Cohen JM, Pyrgiotakis G, Sotiriou GA, Buechel R, Pratsinis SE, et al. 2013. Safer formulation concept for flame-generated engineered nanomaterials. ACS Sustainable Chem Eng. DOI: 10.1021/sc300152f.
  • George S. 2011. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:13.
  • Goldsmith WT, Mckinney W, Jackson M, Law B, Bledsoe T, Siegel P, et al. 2011. A computer-controlled whole-body inhalation exposure system for the oil dispersant corexit Ec9500a. J Toxicol Environ Health A 74:1368–1380.
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, et al. 2010. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36.
  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. 2009. Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856.
  • Jung R, Lee JC, Orosz GT, Sulyok A, Zsolt G, Menyhard M. 2003. Determination of effective electron inelastic mean free paths in SiO2 and Si3N4 using a Si reference. Surf Sci 543:153–161.
  • Kammler HK, Madler L, Pratsinis SE. 2001. Flame synthesis of nanoparticles. Chem Eng Technol 24:14.
  • Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, et al. 2011. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol 8:6.
  • Kosynkin VD, Arzgatkina AA, Ivanov EN, Chtoutsa MG, Grabko AI, Kardapolov AV, et al. 2000. The study of process production of polishing powder based on cerium dioxide. J Alloy Comp 303:421–425.
  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. 2011a. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9.
  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. 2011b. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9.
  • Lawrence NJ, Brewer JR, Wang L, Wu TS, Wells-Kingsbury J, Ihrig MM, et al. 2011. Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Letters. 11:2666–2671.
  • Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. 2011. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77:398–406.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270.
  • Ma JY, Zhao HW, Mercer RR, Barger M, Rao M, Meighan T, et al. 2011. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology 5:312–325.
  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, et al. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–L97.
  • Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M. 2012. Inhalation Toxicity Assessment of Carbon-Based Nanoparticles. Acc Chem Res. doi: 10.1021/ar200311b.
  • Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, et al. 2011. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine 6:2327–2335.
  • OECD. 2010. List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme. Series on the Safety of Manufactured Nanomaterials No. 6. Paris. Available at http://www.oecd.org/science/safetyofmanufacturednanomaterials/publicationsintheseriesonthesafetyofmanufacturednanomaterials.htm
  • Powell BR, Bloink RL, Eickel CC. 1988. Preparation of cerium dioxide powders for catalyst supports. J Am Ceramic Soc 71:C-104–C-106.
  • Raemy DEA. 2011. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm Biopharm 77:8.
  • Rothen-Rutishauser BM, Kiama SG, Gehr P. 2005. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32:281–289.
  • Schmoll LH. 2009. Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicology 3:11.
  • Sotiriou GA, Diaz E, Long MS, Godleski J, Brain J, Pratsinis SE, et al. 2011. A novel platform for pulmonary and cardiovascular toxicological characterization of inhaled engineered nanomaterials. Nanotoxicology 6:680–90.
  • Syono Y, Akimoto SI, Matsui Y. 1971. High pressure transformations in zinc silicates. J Solid State Chem 3:369–380.
  • Walkey CD, Chan WC. 2012. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799.
  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, et al. 2010. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31.
  • Warheit DB, Mchugh TA, Hartsky MA. 1995. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand J Work Environ Health 21(Suppl 2):19–21.
  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134.
  • Yang HM Antonini JM, Barger MW, Butterworth L, Roberts BR, MA JK, Castranova V, MA JY 2001. Diesel exhaust particles suppress macrophage function and slow the pulmonary clearance of Listeria monocytogenes in rats. Environ Health Perspect 109: 515–21.
  • Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, et al. 2011. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730.
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.