377
Views
36
CrossRef citations to date
0
Altmetric
Original Article

Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria

, , , , , , , , , , & show all
Pages 1373-1385 | Received 05 Feb 2012, Accepted 16 Oct 2012, Published online: 12 Nov 2012

References

  • Ames BN, Lee FD, Durston WE. 1973. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA 70:782–12786.
  • Aubrecht J, Osowski JJ, Persaud P, Cheung JR, Ackerman J, Lopes SH, et al. 2007. Bioluminescent salmonella reverse mutation assay: a screen for detecting mutagenicity with high throughput attributes. Mutagenesis 22:335–342.
  • Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Lesniak A, et al. 2008. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074.
  • Behra R, Krug H. 2008. Nanoparticles at large. Nat Nanotechnol 3:253–254.
  • Belisario MA, Buonocore V, De Marinis E, De Lorenzo F. 1984. Biological availability of mutagenic compounds adsorbed onto diesel exhaust particulate. Mutat Res 135:1–9.
  • Blank F, Rothen-Rutishauser B, Gehr P. 2007. Dendritic cells and macrophages for a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol 36:669–677.
  • Bouwmeester H, Lynch I, Marvin HJP, Dawson KA, Berges M, Braguer D, et al. 2011. Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11.
  • Brandenberger C, Clift MJD, Vanhecke D, Muhlfeld C, Stone V, Gehr P, et al. 2010. Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see? Part Fibre Toxicol 7:15.
  • Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, et al. 2010. Effects of uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242:56–65.
  • Brayner R, Ferrari-Illiou R, Brivois N, Djediat S, Benedetti MF, Fievet F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870.
  • British Standards Institution (BSI). 2007. Publicly Available Specification (PAS) 136; Terminology for nanomaterials.
  • Bunger J, Krahl J, Franke H-U, Munack A, Hallier E. 1998. Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutat Res 415:13–23.
  • Chamberlain M, Tarmy EM. 1977. Asbestos and glass fibres in bacterial mutation tests. Mutat Res 43:159–164.
  • Claxton LD, Umbuzeiro GdeA, DeMarini DM. 2010. The salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522.
  • Clift MJD, Gehr P, Rothen-Rutishauser B. 2011. Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731.
  • Collins AR. 2004. The comet assay for DNA damage and repair; principles, applications, and limitations. Mol Biotechnol 26:249–261.
  • Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. 2009. Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 184:192–197.
  • Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, et al. 2009. Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5.
  • Donaldson K, Poland CA, Schins RPF. 2010. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology 4:414–420.
  • Faux SP, Howden PJ, Levy LS. 1994. Iron-dependent formation of 8-hydroxydeoxyguanosine in isolated DNA and mutagenicity in salmonella typhimurium TA102 induced by crocidolite. Carcinogenesis 15:1749–1751.
  • Greim H, Norppa H. 2010. Genotoxicity testing of nanomaterials–conclusions. Nanotoxicology 4:421–424.
  • Grigg J, Tellabati A, Rhead S, Almeida GM, Higgins JA, Bowman KJ, et al. 2009. DNA damage of macrophages at an air-tissue interface induced by metal nanoparticles. Nanotoxicology 3:348–354.
  • Hakura A, Suzuki S, Satoh T. 1999. Advantage of the use of human liver S9 in the Ames test. Mutat Res 438:29–36.
  • Hansen SF, Larsen BH, Olsen SI, Baun A. 2007. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243–250.
  • Hartung T. 2011. From alternative methods to a new toxicology. Eur J Pharm Biopharm 77:338–349.
  • Howden PJ, Faux SP. 1996. Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts. Carcinogenesis 17:413–419.
  • Huang SXL, Jaurand M-C, Kamp DW, Whysner J, Hei TK. 2011. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J Toxicol Environ Health B Crit Rev 14:179–245.
  • Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–58.
  • International Organization for Standardization (ISO). 2008. Technical Specification (ISO/TS) 27687. 2008. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticle, nanofibre and nanoplate
  • Jacobsen NR, Moller P, Cohn CA, Loft S, Vogel U, Wallin H. 2008. Diesel exhaust particles are mutagenic in FE1-Muta™ mouse lung epithelial cells. Mutat Res 641:54–57.
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, et al. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2.
  • Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, et al. 2008. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Muta™ mouse lung epithelial cells. Environ Mol Mutagen 49:476–487.
  • Jaurand MC, Renier A, Daubriac J. 2009. Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 12:16.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–246.
  • Kahru A, Dubourguier H-C. 2010. From ecotoxicology to nanecotoxicology. Toxicology 269:105–119.
  • Kirsch-Volders M, Plas G, Elhajoujji A, Lukamowicz M, Gonzalez L, Loock KV, et al. 2011. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85:873–899.
  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, et al. 2007. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70:2071–2079.
  • Krug H, Wick P. 2011. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–1278.
  • Kuhlbusch TAJ, Asbach C, Fissan H, Gohler D, Stintz M. 2011. Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132.
  • Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. 2009. Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—Many questions, some answers. Mutat Res 681:241–258.
  • Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, et al. 2010. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4:364–381.
  • Lehmann AD, Parak WJ, Zhang F, Ali Z, Rocker C, Nienhaus GU, et al. 2010. Fluorescent-magnetic hybrid nanoparticles induce a dose-dependent increase in proinflamatory response in lung cells in vitro correlated with intracellular localization. Small 6:753–762.
  • Lin C-AJ, Sperling RA, Li JK, Yang T-Y, Li P-Y, Zanella M, et al. 2008. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4:334–341.
  • Lindberg JK, Falck GC-M, Suhonen S, Vippola M, Vanhala E, Catalan J, et al. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173.
  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, et al. 2009. Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902.
  • Madigan MT, Martinko JM, Dunlap PV, Clark DP. 2008. Brock biology of microorganisms. 12th edition. San Francisco, CA, USA: Benjamin Cummings.
  • Maenosono S, Suzuki T, Saita S. 2007. Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32:575–579.
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. 2006. Safe handling of nanotechnology. Nature 444:267–269.
  • Maynard AD. 2007. Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12.
  • Morris J, Willis J, De Martinis D, Hansen B, Laursen H, Sintes JR, et al. 2011. Science policy considerations for responsible nanotechnology decisions. Nat Nanotechnol 6:73–77.
  • Mortelmans K, Zeiger E. 2000. The ames salmonella/microsome mutagenicity assay. Mutat Res 455:29–60.
  • Ng CT, Li JJ, Bay BH, Yung LY. 2010. Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids 2010:947859.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Oberdorster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25.
  • Oberdorster G. 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105.
  • Organisation for Economic Co-operation and Development (OECD). Technical Guide for Chemical Testing 471; Adopted 1997.
  • Organisation for Economic Co-operation and Development (OECD). 2011. Working Party on Nanotechnology (WPN). www.oecd.org. Date accessed 21 October 2011.
  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B. 2010. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79:113–116.
  • Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D, et al. 2010. The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology 4:52–72.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogencity in a pilot study. Nat Nanotechnol 3:423–428.
  • Raemy DO, Limbach LK, Rothen-Rutishauser B, Grass RN, Gehr P, Birbaum K, et al. 2011. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm Biopharm 77:368–375.
  • Rimai DS, Quesnel DJ, Busnaia AA. 2000. The adhesion of dry particles in the nanometer to micrometer size range. Colloids Surf A Physicochem Eng Asp 165:3–10.
  • Roller M. 2009. Carcinogenicity of inhaled nanoparticles. Inhal Toxicol 21:144–157.
  • Rothen-Rutishauser B, Blank F, Muehlfeld C, Gehr P. 2008. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4:1075–1089.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751.
  • Schins RPF, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol 19:189–198.
  • Sera N, Tokiwa H, Miyata N. 1996. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17:2163–2169.
  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, et al. 2009. Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914.
  • Singh P, DeMarini DM, Dick CAJ, Tabor DG, Ryan JV, Linak WP, et al. 2004. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ Health Perspect 112:820–825.
  • Soto AM, Sonnenschein C. 2011. The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays 33:332–340.
  • Stone V, Johnston H, Schins RPF. 2009. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. 2008. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116.
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. 2007. Particokinetics in vitro: dosimetry consideration for in vitro nanoparticle toxicity assessements. Toxicol Sci 95:300–312.
  • Thurnherr T, Su DS, Diener L, Weinberg G, Manser P, Pfaender N, et al. 2009. Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human Jurkat T cells and a comparison to crocidolite asbestos. Nanotoxicology 3:319–338.
  • Wallace WE, Keane MJ, Hill CA, Xu J, Ong TM. 1987. Mutagenicity of diesel exhaust particles and oil shale particles dispersed in lecithin surfactant. J Toxicol Environ Health 21:163–171.
  • Warheit DB, Donner EM. 2010. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of aavailable OECD test guidelines. Nanotoxicology 4:409–413.
  • Wick P, Clift MJD, Rosslein M, Rothen-Rutishauser B. 2011. A brief summary of carbon nanotubes science and technology: A health and safety perspective. ChemSusChem 4:905–911.
  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumreich F, Roht S, et al. 2007. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131.
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–179.
  • Wirnitzer U, Herbold B, Voetz M, Ragot J. 2009. Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 186:160–165.
  • Zhao HW, Barger MW, Ma JKH, Castranova V, Ma JYC. 2004. Effects of exposure to diesel exhaust particles (DEP) on pulmonary metabolic activation of mutagenic agents. Mutat Res 564:103–113.
  • Zhou W, Ye SH. 1997. Mutagenicity of scooter exhaust particulate matter. J Toxicol Environ Health Part A 52:35–44.
  • Zhou W, Ye S-H. 1998. Effects of two new lubricants on the mutagenicity of scooter exhaust particulate matter. Mutat Res 414:131–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.