885
Views
53
CrossRef citations to date
0
Altmetric
Original Article

A weight of evidence approach for hazard screening of engineered nanomaterials

, , , , , & show all
Pages 72-87 | Received 14 May 2012, Accepted 13 Nov 2012, Published online: 14 Dec 2012

References

  • Alvarez-Guerra M, Canis L, Voulvoulis N, Viguri J, Linkov I. 2010. A stochastic multicriteria-based methodology for prioritizing alternatives in sediment management. Sci Total Environ 20: 4354-4367.
  • Auffan M, Rose J, Wiesner MR, Bottero J-Y. 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157: 1127-1133.
  • Barlow P, Clouter-Baker A, Donaldson K, MacCallum J, Stone V. 2005. Carbon black nanoparticles induce type II epithelial cells to release chemotoxins for alveolar macrophages. Part Fibre Toxicol 2: 1-14.
  • Belton V, Stewart T. 2002. Multiple criteria decision analysis: an integrated approach. New York, NY USA: Springer.
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77: 347-357.
  • Bhattacharya K, Davoren M, Boertz J, Schins R, Hoffmann E, Dopp E. 2009. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6: 1-11.
  • Borm PJA, Kreyling W. 2011. Toxicological hazards of inhaled nanoparticles: potential implications for drug delivery. J Nanosci Nanotechnol 4: 1-11.
  • Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, et al. 2011. Harmonization of measurement strategies for exposure to manufactured nano-objects; Report of a Workshop. Ann Occup Hyg 56(1): 1-9
  • Burkhardt-Holm P, Scheurer K. 2007. Application of the weight-of-evidence approach to assess the decline of brown trout (Salmo-átrutta) in Swiss rivers. Aquat Sci Res Across Boundaries 69: 51-70.
  • Chapman PM. 2007. Determining when contamination is pollution — Weight of evidence determinations for sediments and effluents. Environ Int 33: 492-501.
  • Chen H-W, Su S-F, Chien C-T, Lin W-H, Yu S-L, Chou C-C, et al. 2006. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20: 2393-2395.
  • Churg A, Gilks B, Dai J. 1999. Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants. Am J Physiol Lung Cell Mol Physiol 277: L975-L982.
  • Coo H, Aronson KJ. 2004. A systematic review of several potential non-genetic risk factors for multiple sclerosis. Neuroepidemiology 23: 1-12.
  • Derfus A, Chan W, Bhatia S. 2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4: 11-18.
  • Dick CAJ, Brown DM, Donaldson K, Stone V. 2003. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15: 39-52.
  • Donaldson K, Murphy F, Duffin R, Poland C. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7: 1-17.
  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. 2004. Occupational and Environmental Medicine. Nanotoxicology 61: 727-728.
  • Duffin R, Tran CL, Clouter A, Brown DM, MacNee W, Stone V, et al. 2002. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 46: 242-245.
  • EFSA. 2010. Opinion on the potential risks arising from nanoscience and nanotechnologies on food and feed safety. Brussels, Belgium: European Food Safety Authority.
  • European Chemicals Agency. 2007. Guidance on information requirements and chemical safety assessment. Part B: hazard assessment. Helsinki, Finland: European Chemicals Agency (ECHA).
  • Ferin J, Oberdörster G, Penney DP. 1992. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6: 535-542.
  • Feron VJ, van Vliet PW, Notten WRF. 2004. Exposure to combinations of substances: a system for assessing health risks. Environ Toxicol Pharmacol 18: 215-222.
  • Geiser M, Kreyling W. 2010. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7: 1-17.
  • Giove S, Brancia A, Satterstrom FK, Linkov I. 2009. Decision support systems and environment: Role of MCDA. In: Marcomini A, Suter Ii GW, Critto A, editors. Decision support systems for risk-based management of contaminated sites. US: Springer. pp 1-21.
  • Good IJ. 1991. Weight of evidence and the Bayesian likelihood ratio. In: Aitken CG, Stoney D, editors. The use of statistics in forensics science. London, UK: CRC Press. pp 85-106.
  • Grassian VH, Adamcakova-Dodd A, Pettibone JM, O'Shaughnessy PI, Thorne PS. 2007. Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes. Nanotoxicology 1: 211-226.
  • Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. 2006. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115: 397-402
  • Gurr J-R, Wang ASS, Chen C-H, Jan K-Y. 2005. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213: 66-73.
  • Hansen S. 2009. Regulation and risk assessment of nanomaterials – too little, too late? PhD, Copenhagen, Denmark: Technical University of Denmark.
  • Hassellov M, Readman J, Rabville J, Tiede K. 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17: 344-361.
  • Hawkyard CV, Koerner RJ. 2007. The use of erythromycin as a gastrointestinal prokinetic agent in adult critical care: benefits versus risks. J Antimicrob Chemother 59: 347-358.
  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, et al. 1995. Chronic inhalation exposure of wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7: 533-556.
  • Helfenstein M, Miragoli M, Rohr S, Müller L, Wick P, Mohr M, et al. 2008. Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology 253: 70-78.
  • Hertzberg R, Teuschler L. 2002. Evaluating quantitative formulas for dose-response assessment of chemical mixtures. Environ Health Perspect : 965–970.
  • Hristozov D, Malsch I. 2009. Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1: 1161-1194.
  • Hristozov DR, Gottardo S, Critto A, Marcomini A. 2012. Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6: 880-898.
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19: 975-983.
  • ICRP. 1994. Human respiratory tract model for radiological protection. Ann ICRP 24: 1-3.
  • James AC, Stahlhofen W, Rudolf G, Egan MJ, Nixon W, Gehr P, et al. 1991. The respiratory tract deposition model proposed by the ICRP Task Group. Radiat Prot Dosimetry 38: 159-165.
  • Kandlikar M, Ramachandran G, Maynard A, Murdock B, Toscano WA. 2007. Health risk assessment for nanoparticles: a case for using expert judgment. In: Maynard AD, Pui DYH, editors. Nanotechnology and occupational health. Netherlands: Springer. pp 137-156.
  • Keeney RL, Raiffa H. 1993. Decisions with multiple objectives - preferences and value tradeoffs. Cambridge, UK: Cambridge University Press.
  • Klimisch HJ, Andreae M, Tillmann U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25: 1-5.
  • Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. 2009. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results. Toxicology 264: -118.
  • Kreyling W, Semmler-Behnke M, Möller W. 2006. Health implications of nanoparticles. J Nanopart Res 8: 543-562.
  • Landis W, Duncan P, Hayes E, Markiewicz A, Thomas J. 2004. A regional retrospective assessment of the potential stressors causing the decline of the Cherry Point Pacific Herring run. Hum Ecol Risk Assess 10: 271-297.
  • L'Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, et al. 2008. In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5: 1-14.
  • Lee KP, Trochimowicz HJ, Reinhardt CF. 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79: 179-192.
  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM. 2011a. A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nano 6: 784-787.
  • Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T. 2009. Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Sci Total Environ 407: 5199-5205.
  • Linkov I, Satterstrom F, Steevens J, Ferguson E, Pleus R. 2007. Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res 9: 543-554.
  • Linkov I, Satterstrom FK, Kiker G, Batchelor C, Bridges T, Ferguson E. 2006. From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environ Int 32: 1072-1093.
  • Linkov I, Welle P, Loney D, Tkachuk A, Canis L, Kim JB, et al. 2011b. Use of multicriteria decision analysis to support weight of evidence evaluation. Risk Anal 31: 1211-1225.
  • Linnainmaa K, Kivipensas P, Vainio H. 1997. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol In Vitro 11: 329-335.
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. 2006. Titanium Dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):  implications for nanoparticle neurotoxicity. Environ Sci Technol 40: 4346-4352.
  • Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631-1637
  • Maynard A, Kuempel E. 2005. Airborne nanostructured particles and occupational health. J Nanopart Res 7: 587-614.
  • Morgan K. 2005. Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal 25: 1621-1635.
  • Morton A, Airoldi M, Phillips LD. 2009. Nuclear risk management on stage: a decision analysis perspective on the UK's Committee on Radioactive Waste Management. Risk Anal 29: 764–779.
  • Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42: 4447-4453.
  • Muhle H, Bellmann B, Creutzenberg O, Dasenbrock C, Ernst H, Kilpper R, et al. 1991. Pulmonary response to toner upon chronic inhalation exposure in rats. Toxicol Sci 17: 280-299.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627.
  • NIOSH. 2005. NIOSH current intelligence bulletin: evaluation of health hazard and recommendations for occupational exposure to titanium dioxide. Atlanta GA USA: National Institute for Occupational Safety and Health.
  • Oberdoerster G, Ferin J, Gelein R, Soderholm AC, Finkelstein J. 1992. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97: 193-199.
  • Oberdörster G, Ferin J, Lehnert BE. 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102: 173-179.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2: 1-35.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005b. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823-839.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2007. Concepts of nanoparticle dose metric and response metric. Environmental Health Perspectives 115: A290.
  • OECD. 2004. Manual for Investigation of HPV Chemicals. Section 3.1 Guidance for Determining the Quality of Data for the SIDS Dossiers: (Reliability, relevance and adequacy). Paris, France: Organisation for Economic Co-operation and Development.
  • Park E-J, Yi J, Chung K-H, Ryu D-Y, Choi J, Park K. 2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180: 222-229.
  • Peters K, Unger R, Kirkpatrick C, Gatti A, Monari E. 2004. Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15: 321-325.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nano 3: 423-428.
  • Pulskamp K, Diabaté S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168: 58-74.
  • Rehn B, Seiler F, Rehn S, Bruch J, Maier M. 2003. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol 189: 84-95.
  • Renwick LC, Brown D, Clouter A, Donaldson K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61: 442-447.
  • Roberts SM, Jordan KE, Warren DA, Britt JK, James RC. 2002. Evaluation of the carcinogenicity of 1,1-dichloroethylene (vinylidene chloride). Regul Toxicol Pharmacol 35: 44-55.
  • Robichaud C, Tanzil D, Weilenmann U, Wiesner M. 2010. Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39: 8985-8994.
  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. 2006. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91: 159-165.
  • Sager T, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6: 1-12.
  • Sager T, Kommineni C, Castranova V. 2008. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5: 1-15.
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, et al. 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161: 135-142.
  • SCENIHR. 2007. Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Brussels, Belgium: Health & Consumer Protection Directorate General of the European Commission.
  • SCENIHR. 2009. Risk assessment of products of nanotechnologies. Brussels, Belgium: Health & Consumer Protection Directorate General of the European Commission.
  • Seaton A, Donaldson K. 2005. Nanoscience, nanotoxicology, and the need to think small. Lancet 365: 923-924.
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. 2008. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4: 2108-2111.
  • Smith E, Lipkovic I, Ye K. 2002. Weight-of-Evidence (WOE): quantitative estimation of probability of impairment for individual and multiple lines of evidence. Hum Ecol Risk Assess 8: 1585-1596.
  • Staples C, Mihaich E, Carbone J, Woodburn K, Klecka G. 2004. A weight of evidence analysis of the chronic ecotoxicity of nonylphenol ethoxylates, nonylphenol ether carboxylates, and nonylphenol. Hum Ecol Risk Assess 10: 999-1017.
  • Steele K, Carmel Y, Cross J, Wilcox C. 2009. Uses and misuses of Multicriteria Decision Analysis (MCDA) in environmental decision making. Risk Anal 29: 26-33.
  • Stillwell WG, Seaver DA, Edwards W. 1981. A comparison of weight approximation techniques in multi-attribute utility decision making. Organ Behav Hum Perform 28: 62–77.
  • Stone D, Brown N, Watt M, Wilson K, Donaldson H, Ritchie W, et al. 2000. Ultrafine particle-mediated activation of macrophages: intracellular calcium signaling and oxidative stress. Inhal Toxicol 12: 345-351.
  • Stone V, Donaldson K. 2006. Nanotoxicology: signs of stress. Nat Nano 1: 23-24.
  • Stone V, Hankin S, Aitken R, Achberger K, Baun A, Christensen F, et al. 2009. Engineered nanoparticles: review of health and environmental safety (ENRHES) project final report. Edinburgh.
  • Tervonen T, Linkov I, Figueira J, Steevens J, Chappell M, Merad M. 2009. Risk-based classification system of nanomaterials. J Nanopart Res 11: 757-766.
  • Tiede K, Boxal A, Tear A, Lewis J, David H, Hassellov M. 2008. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25: 795-821.
  • US EPA. 1995. Guidelines for carcinogen risk assessment. Washington DC USA: US Environmental Protection Agency.
  • US EPA. 2009. Nanomaterial case studies: nanoscale titanium dioxide (external review draft). Washington, DC: US Environmental Protection Agency.
  • US EPA. 2010. Workshop summary for the EPA Board of Scientific Counselors. Washington, DC: National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency.
  • Van Leeuwen C, Vermeire T. 2007. Risk assessment of chemicals: An introduction. The Netherlands, Dordrecht: Springer.
  • von Winterfeldt D, Edwards W. 1986. Decision analysis and behavioral research. Cambridge: Cambridge University Press.
  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, et al. 2008. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183: 72-80.
  • Warheit DB, Reed KL, Sayes CM. 2009. A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology 3: 181-187.
  • Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. 2007a. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95: 270-280.
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007b. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 230: 90-104.
  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. 2006. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci 91: 227-236.
  • Weed DL. 2005. Weight of evidence: a review of concept and methods. Risk Anal 25: 1545-1557.
  • World Health Organization. 1985. Reference methods for measuring airborne man-made mineral fiber (MMMF). Copenhagen: World Health Organization.
  • Zhang AP, Sun YP. 2004. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10: 3191-3193.
  • Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, et al. 2010. Weight of evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology 5: 445-458.
  • Zuin S, Pojana G, Marcomini A. 2007. Effect-oriented physico-chemical characterization of nanomaterials. In: Monteiro-Riviere NA, Tran L, editors. Nanotoxicology: characterization, dosing and health effects. New York, NY USA: Informa Healthcare, pp 19-58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.