304
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “A sticky story”

, , , , , , , , & show all
Pages 219-229 | Received 24 Oct 2013, Accepted 17 Apr 2014, Published online: 22 May 2014

References

  • Ajayan PM, Zhou OZ. 2001. Applications of carbon nanotubes. In Dresselhaus MS, Dresselhaus G & Avouris P, eds. Carbon Nanotubes. Berlin, Heidelberg: Springer, 391–425
  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–8
  • Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. 2002. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2:25–8
  • Bourdiol F, Mouchet F, Perrault A, Fourquaux I, Datas L, Gancet C, et al. 2013. Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae. Carbon 54:175–91
  • Brouwer JFC, Wolfstein K, Ruddy GK, Jones TER, Stal LJ. 2005. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–12
  • Chowdhury DF, Cui ZF. 2011. Carbon nanotube length reduction techniques, and characterisation of oxidation state using quasi-elastic light scattering. Carbon 49:862–8
  • Cleuvers M, Ratte HT. 2002. The importance of light intensity in algal tests with coloured substances. Water Res 36:2173–8
  • Debenest T, Silvestre J, Coste M, Pinelli E. 2010. Effects of pesticides on freshwater diatoms. In Whitacre DM, ed. Reviews of Environmental Contamination and Toxicology, Vol. 203. New York (NY): Springer New York, 87–103
  • Dong L, Joseph KL, Witkowski CM, Craig MM. 2008. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology 19:255702
  • Dooren de Jong. 1965. Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie Van Leeuwenhoek 31:301–13
  • Endo M, Strano MS, Ajayan PM. 2008. Potential applications of carbon nanotubes. In Carbon Nanotubes. Berlin, Heidelberg: Springer, 13–61
  • Erlandsen SL. 2004. High-resolution visualization of the microbial glycocalyx with low-voltage scanning electron microscopy: dependence on cationic dyes. J Histochem Cytochem 52:1427–35
  • Flemming HC, Wingender J. 2001. Relevance of microbial extracellular polymeric substances (EPSs). Part I: structural and ecological aspects. Water Sci Technol J Int Assoc Water Pollut Res 43:1–8
  • Gao J, Llaneza V, Youn S, Silvera-Batista CA, Ziegler KJ, Bonzongo J-CJ. 2012. Aqueous suspension methods of carbon-based nanomaterials and biological effects on model aquatic organisms. Environ Toxicol Chem 31:210–14
  • Ge C, Li Y, Yin J-J, Liu Y, Wang L, Zhao Y, Chen C. 2012. The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. Npg Asia Mater 4:e32. doi: 10.1038/am.2012.60
  • Gennes PGde. 1990. Simple views on adhesion and fracture. Can J Phys 68:1049–54
  • Gusev AA, Fedorova IA, Tkachev AG, Godymchuk AY, Kuznetsov DV, Polyakova IA. 2012. Acute toxic and cytogenetic effects of carbon nanotubes on aquatic organisms and bacteria. Nanotechnol Russ 7:509–16
  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–3
  • Hilding J, Grulke EA, George Zhang Z, Lockwood F. 2003. Dispersion of carbon nanotubes in liquids. J Dispers Sci Technol 24:1–41
  • Horst AM, Vukanti R, Priester JH, Holden PA. 2013. An assessment of fluorescence- and absorbance-based assays to study metal-oxide nanoparticle ROS production and effects on bacterial membranes. Small 9:1753–64
  • Hsieh S-F, Bello D, Schmidt DF, Pal AK, Stella A, Isaacs JA, Rogers EJ. 2013. Mapping the biological oxidative damage of engineered nanomaterials. Small 9:1853–65
  • Hund-Rinke K, Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res – Int 13:225–32
  • Hyung H, Fortner JD, Hughes JB, Kim J-H. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–84
  • Ilyash LV, Belevich TA, Ulanova AY, Matorin DN. 2007. Fluorescence parameters of marine plankton algae at the assimilation of organic nitrogen. Mosc Univ Biol Sci Bull 62:111–16
  • Jachak A, Lai SK, Hida K, Suk JS, Markovic N, Biswal S, et al. 2012. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 6:614–22
  • Kang S, Herzberg M, Rodrigues DF, Elimelech M. 2008. Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–13
  • Keller AA, McFerran S, Lazareva A, Suh S. 2013. Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–708
  • Kulikova NA, Stepanova EV, Koroleva OV. 2005. Mitigating activity of humic substances: direct influence on biota. In Perminova IV, Hatfield K & Hertkorn N, eds. Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice. Berlin, Heidelberg: Springer-Verlag, 285–309
  • Kümmerer K, Menz J, Schubert T, Thielemans W. 2011. Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82:1387–92
  • Kwok KW, Leung KM, Flahaut E, Cheng J, Cheng SH. 2010. Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5:951–61
  • Long Z, Ji J, Yang K, Lin D, Wu F. 2012. Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae. Environ Sci Technol 46:8458–66
  • Losic D, Rosengarten G, Mitchell JG, Voelcker NH. 2006. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotechnol 6:982–9
  • Luongo LA, Zhang X (Jackie). 2010. Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178:356–62
  • Matorin DN, Karateyeva AV, Osipov VA, Lukashev EP, Seifullina NK, Rubin AB. 2010. Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii. Nanotechnol Russ 5:320–7
  • Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–41
  • Monthioux M, Kuznetsov VL. 2006. Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–3
  • Mouchet F. Landois P. Datsyuk V, Puech P, Pinelli E, Flahaut E, Gauthier L. 2011. International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ Toxicol 26:136–45
  • Mouchet F, Landois P, Flahaut E, Pinelli E, Gauthier L. 2007. Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum. Nanotoxicology 1:149–56
  • Mouchet F, Landois P, Puech P, Pinelli E, Flahaut E, Gauthier L. 2010. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine 5:963–74
  • Mwangi JN, Wang N, Ingersoll CG, Hardesty DK, Brunson EL, Li H, Deng B. 2012. Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31:1823–30
  • Nel A. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7
  • OECD (Organisation for Economic Co-operation and Development). 2002. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures, Vol.: OECD Series on Testing and Assessment. Paris, France: OECD Publishing
  • Oeurng C, Sauvage S, Coynel A, Maneux E, Etcheber H, Sánchez-Pérez J-M. 2011. Fluvial transport of suspended sediment and organic carbon during flood events in a large agricultural catchment in southwest France. Hydrol Process 25:2365–78
  • Petersen EJ, Pinto RA, Mai DJ, Landrum PF, Weber WJ. 2011. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ Sci Technol 45:1133–8
  • Pumera M. 2007. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets. Langmuir 23:6453–8
  • Sakaguchi T, Nakajima A, Horikoshi T. 1981. Studies on the accumulation of heavy metal elements in biological systems. Eur J Appl Microbiol Biotechnol 12:84–9
  • Scala S, Bowler C. 2001. Molecular insights into the novel aspects of diatom biology. Cell Mol Life Sci 58:1666–73
  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K. 2011. Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–44
  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–33
  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, et al. 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–914
  • Staats N, De Winder B, Stal L, Mur L. 1999. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–9
  • Stal LJ. 2003. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J 20:463–78
  • Vaisman L, Wagner HD, Marom G. 2006. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–30, 37–46
  • Von Moos N, Slaveykova VI. 2013. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps. Nanotoxicology 8:1–26
  • Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. 2008. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–8
  • Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X. 2010. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201
  • Wild E, Jones KC. 2009. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–4
  • Yang K, Xing B. 2009. Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut 157:1095–100
  • Youn S, Wang R, Gao J, Hovespyan A, Ziegler KJ, Bonzongo J-CJ, Bitton G. 2012. Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6:161–72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.