352
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Amorphous silica nanoparticles alter microtubule dynamics and cell migration

, , , , , , , & show all
Pages 729-736 | Received 03 Feb 2014, Accepted 23 Sep 2014, Published online: 17 Oct 2014

References

  • Apopa PL, Qian Y, Shao R, Guo NL Schwegler-Berry D, Pacurari M, et al. 2009. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 6:1
  • Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Lesniak A, et al. 2008. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–74
  • Decordier I, Cundari E, Kirsch-Volders M. 2008. Mitotic checkpoints and the maintenance of the chromosome karyotype. Mutat Res 651:3–13
  • de Forges H, Bouissou A, Perez F. 2012. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–74
  • Diesel B, Hoppstädter J, Hachenthal N, Zarbock R, Cavelius C, Whal B, et al. 2013. Activation of Rac1 GTPase by nanoparticulate structures in human macrophages. Eur J Pharm Biopharm 84:315–24
  • Elhajouji A, Cunha M, Kirsch-Volders M.1998.Spindle poisons can induce polyploidy by mitotic slippage and micronucleate mononucleates in the cytokinesis-block assay. Mutagenesis 13:193–8
  • Elhajouji A, Van Hummelen P, Kirsch-Volders M. 1995. Indications for a threshold of chemically-induced aneuploidy in vitro in human lymphocytes. Environ Mol Mutagen 26:292–304
  • Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Mahinpour R. 2008. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin (Shanghai) 40:777–82
  • Gonzalez L, Thomassen LC, Plas G, Rabolli V, Napierska D, Decordier I, et al. 2010a. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology 4:382–95
  • Gonzalez L, Decordier I, Kirsch-Volders M. 2010b. Induction of chromosome malsegregation by nanomaterials. Biochem Soc Trans 38:1691–7
  • Gonzalez L, Corradi S, Thomassen LC, Martens JA, Cundari E, Lison D, Kirsch-Volders M. 2011. Methodological approaches influencing cellular uptake and cyto-(geno) toxic effects of nanoparticles. J Biomed Nanotechnol 7:3–5
  • Gonzalez L, Lukamowicz-Rajska M, Thomassen LC, Kirschhock CE, Leyns L, Lison D, et al. 2014. Co-assessment of cell cycle and micronucleus frequencies demonstrates the influence of serum on the in vitro genotoxic response to amorphous monodisperse silica nanoparticles of varying sizes. Nanotoxicology 8:876–84
  • Hoppe FM. 1993. Multiple Comparisons, Selection, and Applications in Biometry. New York: Marcel Dekker Inc
  • Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, et al. 2013. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomed 8:3619–30
  • Janke C, Bulinski JC. 2011. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–86
  • Kline-Smith SL, Walczak CE. 2004. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol Cell 15:317–27
  • Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H. 2013. In vitro cell migration and invasion assays. Mutat Res 752:10–24
  • Li D, Xie S, Ren Y, Huo L, Gao J, Cui D, et al. 2011. Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner. Protein Cell 2:150–60
  • Mu Q, Hondow NS, Krzeminski L, Brown AP, Jeuken LJ, Routledge MN. 2012. Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol 9:29
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S, et al. 2011. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1
  • Napierska D, Quarck R, Thomassen LC, Lison D, Martens JA, Delcroix M, et al. 2012a. Amorphous silica nanoparticles promote monocyte adhesion to human endothelial cells: size-dependent effect. Small 9:430–8
  • Napierska D, Rabolli V, Thomassen LC, Dinsdale D, Princen C, Gonzalez L, Poels KL, et al. 2012b. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol 25:828–37
  • Ogneva IV, Burakov SV, Shubenkov AN, Burakova LB. 2014. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles. Nanoscale Res Lett 9:284
  • Park MV, Verharen HW, Zwart E, Hernandez LG, van Benthem J, Elsaesser A, et al. 2011. Genotoxicity evaluation of amorphous silica nanoparticles of different sizes using the micronucleus and the plasmid lacZ gene mutation assay. Nanotoxicology 5:168–81
  • Rieder CL. 1981. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84:145–58
  • Sergent JA, Paget V, Chevillard S. 2012. Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann Occup Hyg 56:622–30
  • Tay CY, Cai P, Setyawati MI, Fang W, Tan LP, Hong CH, et al. 2013. Nanoparticles strengthen intracellular tension and retard cellular migration. Nano Lett 14:83–8
  • Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E, Kabarriti R, et al. 2007. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci 120:1469–79
  • Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F. 2012. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res 745:11–20
  • Verhey KJ, Gaertig J. 2007. The tubulin code. Cell Cycle 6:2152–60
  • Xu F, Piett C, Farkas S, Qazzaz M, Syed NI. 2013. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6:29
  • Zuo Q, Wu W, Li X, Zhao L, Chen W. 2012. HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin. Oncol Rep 27:819–24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.