492
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure

, , , , , , & show all
Pages 941-951 | Received 18 Jul 2014, Accepted 31 Oct 2014, Published online: 05 Dec 2014

References

  • Ali H, Kilic G, Vincent K, Motamedi M, Rytting E. 2013. Nanomedicine for uterine leiomyoma therapy. Ther Deliv 4:161–75
  • Andreux PA, Houtkooper RH, Auwerx J. 2013. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12:465–83
  • Backes CH, Nelin T, Gorr MW, Wold LE. 2013. Early life exposure to air pollution: how bad is it? Toxicol Lett 216:47–53
  • Barker DJ. 2006. Adult consequences of fetal growth restriction. Clin Obstet Gynecol 49:270–83
  • Barron C, Mandala M, Osol G. 2010. Effects of pregnancy, hypertension and nitric oxide inhibition on rat uterine artery myogenic reactivity. J Vasc Res 47:463–71
  • Boegehold MA. 1998. Heterogeneity of endothelial function within the circulation. Curr Opin Nephrol Hypertens 7:71–8
  • Boisen AM, Shipley T, Jackson P, Hougaard KS, Wallin H, Yauk CL, Vogel U. 2012. NanoTIO(2) (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice. Part Fibre Toxicol 9:19
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–19
  • Capra L, Tezza G, Mazzei F, Boner AL. 2013. The origins of health and disease: the influence of maternal diseases and lifestyle during gestation. Ital J Pediatr 39:7
  • Chance B, Williams GR. 1955. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–93
  • Chance B, Williams GR. 1956. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134
  • Chang LL, Wun WS, Wang PS. 2012. In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. First generation rats (F(1)). Toxicology 301:40–9
  • Chilian WM, Eastham CL, Marcus ML. 1986. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 251:H779–88
  • Dabkowski ER, Williamson CL, Bukowski VC, Chapman RS, Leonard SS, Peer CJ, et al. 2009. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol 296:H359–69
  • Davis MJ. 1993. Myogenic response gradient in an arteriolar network. Am J Physiol 264:H2168–79
  • Ebisu K, Bell ML. 2012. Airborne PM2.5 chemical components and low birth weight in the northeastern and mid-Atlantic regions of the United States. Environ Health Perspect 120:1746–52
  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. 2010. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52
  • Fall CH, Osmond C, Barker DJ, Clark PM, Hales CN, Stirling Y, Meade TW. 1995. Fetal and infant growth and cardiovascular risk factors in women. BMJ 310:428–32
  • Fanos V, Atzori L, Makarenko K, Melis GB, Ferrazzi E. 2013. Metabolomics application in maternal-fetal medicine. Biomed Res Int 2013:720514
  • Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, et al. 2013. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation 128:2813–51
  • Giguere Y, Charland M, Theriault S, Bujold E, Laroche M, Rousseau F, et al. 2012. Linking preeclampsia and cardiovascular disease later in life. Clin Chem Lab Med 50:985–93
  • Gonzalez-Bulnes A, Ovilo C, Lopez-Bote CJ, Astiz S, Ayuso M, Perez-Solana ML, et al. 2013. Fetal and early-postnatal developmental patterns of obese-genotype piglets exposed to prenatal programming by maternal over- and undernutrition. Endocr Metab Immune Disord Drug Targets 13:240–9
  • Hales CN, Barker DJ. 1992. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601
  • Hofhaus G, Shakeley RM, Attardi G. 1996. Use of polarography to detect respiration defects in cell cultures. Methods Enzymol 264:476–83
  • Hollander JM, Thapa D, Shepherd DL. 2014. Physiological and structural differences in spatially-distinct subpopulations of cardiac mitochondria: influence of pathologies. Am J Physiol Heart Circ Physiol 307:H1–14
  • Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Loschner K, Larsen EH, et al. 2010. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol 7:16
  • Hougaard KS, Jackson P, Kyjovska ZO, Birkedal RK, De Temmerman PJ, Brunelli A, et al. 2013. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod Toxicol 41:86–97
  • Iavicoli I, Fontana L, Leso V, Bergamaschi A. 2013. The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–801
  • International Life Sciences Institute (ILSI) Risk Science Institute. 2000. The relevance of the lung response to particle overload for human risk assessment: a workshop consensus report. Inhal Toxicol 12:1–17
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, et al. 2012. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res 745:73–83
  • Jo E, Seo G, Kwon JT, Lee M, Lee B, Eom I, et al. 2013. Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. J Toxicol Sci 38:525–30
  • Knuckles TL, Yi J, Frazer DG, Leonard HD, Chen BT, Castranova V, Nurkiewicz TR. 2011. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways. Nanotoxicology 6:724–35
  • Kyjovska ZO, Boisen AM, Jackson P, Wallin H, Vogel U, Hougaard KS. 2013. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod Toxicol 36:88–97
  • Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M. 2013. Proteomics: from single molecules to biological pathways. Cardiovasc Res 97:612–22
  • Leavens TL, Parkinson CU, James RA, House D, Elswick B, Dorman DC. 2006. Respiration in sprague-dawley rats during pregnancy. Inhal Toxicol 18:305–12
  • LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. 2009. Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A 72:1576–84
  • LeBlanc AJ, Moseley AM, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. 2010. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10:27–36
  • Linderman JR, Boegehold MA. 1999. Growth-related changes in the influence of nitric oxide on arteriolar tone. Am J Physiol 277:H1570–8
  • Makikallio K, Kaukola T, Tuimala J, Kingsmore F, Hallman M, Ojaniemi M. 2012. Umbilical artery chemokine CCL16 is associated with preterm preeclampsia and fetal growth restriction. Cytokine 60:377–84
  • Mann EE, Thompson LC, Shannahan JH, Wingard CJ. 2012. Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:691–702
  • Mathias FT, Romano RM, Kizys MM, Kasamatsu T, Giannocco G, Chiamolera MI, et al. 2014. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology [Epub ahead of print]
  • Minarchick VC, Stapleton PA, Porter DW, Wolfarth MG, Ciftyurek E, Barger M, et al. 2013. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 13:323–37
  • National Institute of Environmental Health Sciences. 2012. Linking early environmental exposures to adult diseases. NIEHS. Available at: http://www.niehs.nih.gov/health/assets/docs_f_o/linking_early_environmental_exposures_to_adult_diseases.pdf. Accessed on 15 July 2014
  • Nurkiewicz TR, Porter DW, Barger M, Castranova V, Boegehold MA. 2004. Particulate matter exposure impairs systemic microvascular endothelium-dependent dilation. Environ Health Perspect 112:1299–306
  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, Castranova V. 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol 5:1
  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, et al. 2009. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203
  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Moseley AM, Cumpston JL, et al.; HEI Health Review Committee. 2011. Pulmonary particulate matter and systemic microvascular dysfunction. Res Rep Health Eff Inst 3–48
  • Osol G, Moore LG. 2014. Maternal uterine vascular remodeling during pregnancy. Microcirculation 21:38–47
  • Palmer JW, Tandler B, Hoppel CL. 1977. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–9
  • Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F. 2013. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis 230:191–7
  • Parker RM. 2006. Testing for reproductive toxicity. In: Ronald DH, ed. Developmental and Reproductive Toxicology: A Practical Approach. 2nd ed. Boca Raton: CRC Press, 467
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. 2012. Acute pulmonary dose-response to inhaled multi-walled arbon nanotubes. Nanotoxicology 7:1179–94
  • Prisby RD, Muller-Delp J, Delp MD, Nurkiewicz TR. 2008. Age, gender, and hormonal status modulate the vascular toxicity of the diesel exhaust extract phenanthraquinone. J Toxicol Environ Health A 71:464–70
  • Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, et al. 2013. Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J Toxicol Environ Health A 76:651–68
  • Rogers LK, Velten M. 2011. Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 89:417–21
  • Ruehlmann DO, Steinert JR, Valverde MA, Jacob R, Mann GE. 1998. Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+ channels in smooth muscle cells. FASEB J 12:613–19
  • Sager TM, Castranova V. 2009. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol 6:15
  • Sager TM, Kommineni C, Castranova V. 2008. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17
  • Schwartz SM. 1980. Role of endothelial integrity in atherosclerosis. Artery 8:305–14
  • Simmons RA. 2012. Developmental origins of diabetes: the role of oxidative stress. Best Pract Res Clin Endocrinol Metab 26:701–8
  • Stapleton PA, James ME, Goodwill AG, Frisbee JC. 2008. Obesity and vascular dysfunction. Pathophysiology 15:79–89
  • Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, et al. 2012a. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13:13781–803
  • Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. 2012b. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 19:126–42
  • Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. 2013. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 209:227.e1–11
  • Thompson LC, Urankar RN, Holland NA, Vidanapathirana AK, Pitzer JE, Han L, et al. 2014. C(6)(0) exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicol Sci 138:365–78
  • Tuma RF, Duran WN, Ley K. 2008. Handbook of Physiology: Microcirculation. San Diego, CA: Academic Press
  • van den Hooven EH, Pierik FH, de KY, Willemsen SP, Hofman A, van Ratingen SW, et al. 2012. Air pollution exposure during pregnancy, ultrasound measures of fetal growth, and adverse birth outcomes: a prospective cohort study. Environ Health Perspect 120:150–156
  • Vedernikov Y, Saade GR, Garfield RE. 1999. Vascular reactivity in preeclampsia. Semin Perinatol 23:34–44
  • Vidanapathirana AK, Thompson LC, Odom J, Holland NA, Sumner SJ, Fennell TR, et al. 2014. Vascular tissue contractility changes following late gestational exposure to multi-walled carbon nanotubes or their dispersing vehicle in Sprague Dawley rats. J Nanomed Nanotechnol 5:201
  • Votyakova TV, Reynolds IJ. 2001. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–77
  • Wallace DC. 2009. Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb Symp Quant Biol 74:383–93
  • Warheit DB, Sayes CM, Reed KL. 2009. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43:7939–45
  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. 2004. Maternal nutrition and fetal development. J Nutr 134:2169–72
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–8
  • Yi J, Chen BT, Schwegler-Berry D, Frazer D, Castranova V, McBride C, et al. 2013. Whole-body nanoparticle aerosol inhalation exposures. J Vis Exp e50263
  • Yoshida S, Hiyoshi K, Oshio S, Takano H, Takeda K, Ichinose T. 2010. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil Steril 93:1695–9
  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. 1997. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.