403
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment

, , , , &
Pages 963-971 | Received 05 May 2014, Accepted 25 Nov 2014, Published online: 11 Feb 2015

References

  • Baez S. 1973. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–94
  • Bihari P, Holzer M, Praetner M, Fent J, Lerchenberger M, Reichel CA, et al. 2010. Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269:148–54
  • De Jong WH, Van Der Ven LT, Sleijffers A, Park MV, Jansen EH, Van Loveren H, Vandebriel RJ. 2013. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials 34:8333–43
  • Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, et al. 2013. Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 8:403–23
  • Geiser M, Kreyling W. 2010. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2
  • Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al. 2014. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11:30
  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, et al. 2011. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–16
  • Holzer M, Bihari P, Praetner M, Uhl B, Reichel C, Fent J, et al. 2014. Carbon-based nanomaterials accelerate arteriolar thrombus formation in the murine microcirculation independently of their shape. J Appl Toxicol 34:1167–76
  • Ilinskaya AN, Dobrovolskaia MA. 2013. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond) 8:969–81
  • Jensen KA, Kembouche Y, Christiansen E, Jacobsen NR, Wallin H, Guiot C, et al. 2011. Final protocol for producing suitable manufactured nanomaterial exposure media. [Online] Available at: http://www.nanogenotox.eu/files/PDF/Deliverables/nanogenotox%20deliverable%203_wp4_%20dispersion%20protocol.pdf. Accessed on 01 April 2014
  • Jiang J, Oberdorster G, Elder A, Gelein R, Mercer P, Biswas P. 2008. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, et al. 2013. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43:1–20
  • Kermanizadeh A, Chauché C, Balharry D, Brown DM, Kanase N, Boczkowski J, et al. 2014. The role of Kupffer cells in the hepatic response to silver nanoparticles. Nanotoxicology 8 S1:149–54
  • Khandoga A, Stampfl A, Takenaka S, Schulz H, Radykewicz R, Kreyling W, Krombach F. 2004. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109:1320–5
  • Khandoga A, Stoeger T, Khandoga AG, Bihari P, Karg E, Ettehadieh D, et al. 2010. Platelet adhesion and fibrinogen deposition in murine microvessels upon inhalation of nanosized carbon particles. J Thromb Haemost 8:1632–40
  • Krug HF, Wick P. 2011. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–78
  • Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, et al. 2014. A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: a practical guide. Nanotoxicology 8:220–32
  • LeBlanc AJ, Moseley AM, Chen BT, Frazer D, Castranova V, Nurkiewicz TR. 2010. Nanoparticle inhalation impairs coronary microvascular reactivity via a local reactive oxygen species-dependent mechanism. Cardiovasc Toxicol 10:27–36
  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–89
  • Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, et al. 2014. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 8:36–45
  • Mann EE, Thompson LC, Shannahan JH, Wingard CJ. 2012. Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:691–702
  • Mempel TR, Moser C, Hutter J, Kuebler WM, Krombach F. 2003. Visualization of leukocyte transendothelial and interstitial migration using reflected light oblique transillumination in intravital video microscopy. J Vasc Res 40:435–41
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–7
  • Nemmar A, Al-Maskari S, Ali BH, Al-Amri IS. 2007. Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. Am J Physiol Lung Cell Mol Physiol 292:L664–70
  • Nemmar A, Hoet PH, Dinsdale D, Vermylen J, Hoylaerts MF, Nemery B. 2003. Diesel exhaust particles in lung acutely enhance experimental peripheral thrombosis. Circulation 107:1202–8
  • Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, et al. 2002. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 166:998–1004
  • Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S, et al. 2011. Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO(2) nanorods. Toxicology 279:167–75
  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, et al. 2009. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203
  • Peters A, Perz S, Doring A, Stieber J, Koenig W, Wichmann HE. 1999. Increases in heart rate during an air pollution episode. Am J Epidemiol 150:1094–8
  • Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. 2006. Translocation and potential neurological effects of fine and ultrafine particles: a critical update. Part Fibre Toxicol 3:13
  • Petkovic J, Zegura B, Stevanovic M, Drnovsek N, Uskokovic D, Novak S, Filipic M. 2011. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5:341–53
  • Pietroiusti A. 2012. Health implications of engineered nanomaterials. Nanoscale 4:1231–47
  • Pope CA, Dockery DW, Kanner RE, Villegas GM, Schwartz J. 1999. Oxygen saturation, pulse rate, and particulate air pollution: a daily time-series panel study. Am J Respir Crit Care Med 159:365–72
  • Praetner M, Rehberg M, Bihari P, Lerchenberger M, Uhl B, Holzer M, et al. 2010. The contribution of the capillary endothelium to blood clearance and tissue deposition of anionic quantum dots in vivo. Biomaterials 31:6692–700
  • Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW. 2005. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146:882–93
  • Rehberg M, Praetner M, Leite CF, Reichel CA, Bihari P, Mildner K, et al. 2010. Quantum dots modulate leukocyte adhesion and transmigration depending on their surface modification. Nano Lett 10:3656–64
  • Rehberg M, Leite CF, Mildner K, Horstkotte J, Zeuschner D, Krombach F. 2012. Surface chemistry of quantum dots determines their behavior in postischemic tissue. ACS Nano 6:1370–9
  • Rumbaut RE, Slaff DW, Burns AR. 2005. Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation 12:259–74
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. 2006. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–85
  • Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W, Krombach F, et al. 2005. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 18:1–22
  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG. 2004. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16:453–9
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. 2008. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–11
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15
  • Tangelder GJ, Slaaf DW, Muijtjens AM, Arts T, Oude Egbrink MG, Reneman RS. 1986. Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery. Circ Res 59:505–14
  • Taurozzi JS, Hackley VA, Wiesner MR. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations. Nanotoxicology 5:711–29
  • Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, et al. 2013. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 8:e70618
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104
  • Yang Y, Lan J, Xu Z, Chen T, Zhao T, Cheng T, et al. 2014. Toxicity and biodistribution of aqueous synthesized ZnS and ZnO quantum dots in mice. Nanotoxicology 8:107–16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.