362
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality

, , , , &
Pages 10-19 | Received 23 Sep 2014, Accepted 04 Dec 2014, Published online: 13 Feb 2015

References

  • Adenuga AA, Truong L, Tanguay RL, Remcho VT. 2013. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. Int J Biomed Nanosci Nanotechnol 3:39–51
  • Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. 2004. Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–7
  • Asharani PV, Serina NGB, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S. 2008. Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–9
  • Baun A, Hartmann NB, Grieger K, Kusk KO. 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–95
  • Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD. 2014. Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 1:260–70
  • Cheaptubes. 2014. Multi walled carbon nanotubes. Available at: http://www.cheaptubesinc.com/default.htm. Accessed on September 2014
  • Chen Q, Saltiel C, Manickavasagam S, Schadler LS, Siegel RW, Yang H. 2004. Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. J Colloid Interf Sci 280:91–7
  • Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, et al. 2009. Acute and long term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharm 235:216–25
  • Cheng J, Cheng SH. 2012. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomed 7:3731–9
  • Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–16
  • Collett D. (1991). Modelling Binary Data. London, UK: Chapman and Hall
  • Connors KA, Voutchkova-Kostal A, Kostal J, Anastas PT, Zimmerman JB, Brooks BW. 2014. Reducing aquatic hazard of industrial chemicals: Probabilistic assessment of sustainable molecular design principles. Environ Toxicol Chem 33:1894–902
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 2013. Carbon nanotubes: present and future commercial applications. Science 339:535–9
  • Endo M, Strano MS, Ajayan PM. 2008. Potential applications of carbon nanotubes. Top Appl Phys 111:13–61
  • Fako VE, Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61:478–86
  • Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. 1999. Modification of the surface chemistry of activated carbons. Carbon 37:1379–89
  • Fox J. (1997). Applied Regression Analysis, Linear Models, and Related Methods. Thousand Oaks, CA: Sage Publications
  • Fubini B, Ghiazza M, Fenoglio I. 2010. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–63
  • Gilbertson LM, Goodwin DG, Taylor AD, Pfefferle LD, Zimmerman JB. 2014. Toward tailored functional design of multi-walled carbon nanotubes (MWNTs): electrochemical and antimicrobial activity enhancement via oxidation and selective reduction. Environ Sci Technol 48:5938–45
  • Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BLS, Tanguay RL. 2011. Systematic evaluation of nanomaterial toxicity: Utility of standardized materials and rapid assays. ACS Nano 5:4688–97
  • Hilding J, Grulke EA, Zhang ZG, Lockwood F. 2003. Dispersion of carbon nanotubes in liquids. J Disper Sci Technol 24:1–41
  • Hill AJ, Teraoka H, Heideman W, Peterson RE. 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–46
  • Jones CP, Jurkschat K, Crossley A, Banks CE. 2008. Multi-walled carbon nanotube modified basal plane pyrolytic graphite electrodes: exploring heterogeneity, electro-catalysis and highlighting batch to batch variation. J Iran Chem Soc 5:279–85
  • Kane AB, Hurt RH. 2008. The asbestos analogy revisted. Nat Nanotechnol 3:378–9
  • Kang S, Herzberg M, Rodrigues DF, Elimelech M. 2008a. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 24:6409–13
  • Kang S, Mauter MS, Elimelech M. 2008b. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–34
  • Kang S, Pinault M, Pfefferle LD, Elimelech M. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–3
  • Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, et al. 2010. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4:1481–92
  • Kostal J, Voutchkova-Kostal A, Anastas PT, Zimmerman JB. 2013. Identifying and designing chemicals with minimal acute aquatic toxicity. Proc Natl Acad Sci USA [Epub ahead of print]. DOI: 10.1073/pnas.1314991111
  • Kundu S, Wang Y, Xia W, Muhler M. 2008. Thermal stability and reducibility of oxygen-containig functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112:16869–78
  • Lam CW, James JT, Mccluskey R, Arepalli S, Hunter RL. 2006. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217
  • Lam CW, James JT, Mccluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–34
  • Le Cessie S, Van Houwelingen JC. 1991. A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47:1267–82
  • Lee KJ, Browning LM, Nallathamby PD, Xu XH. 2013. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 26:904–17
  • Lin S, Zhao Y, Nel AE, Lin S. 2012. Zebrafish: an in vivo model for nano EHS studies. Small 9:1608–18
  • Liu S, Wei L, Hao L, Fang N, Chang MW, et al. 2009. Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–902
  • Liu Y, Zhao Y, Sun B, Chen C. 2013. Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–13
  • Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, et al. 2012. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17:66–74
  • Mcfadden D. 1974. Conditional Logit Analysis of Qualitative Choice Behavior. New York: Academic Press
  • Montes-Moran MA, Suarez D, Menendez JA, Fuente E. 2004. On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–25
  • Morgan BJT. (1992). Analysis of Quantal Response Data. London UK: Chapman and Hall
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delow M, et al. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharm 207:221–31
  • NNI. 2011. National Nanotechnology Initiative Environmental, Health, and Safety Reserach Strategy. Composed by the National Science and Technology Council Committee on Technology and the Subcommittee on Nanoscale Science, Engineering, and Technology
  • NRC. 2012. A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials. Washington, DC: National Research Council of The National Academies
  • Nanolab. 2011. Products: carbon nanotubes and nanomaterials. Available from: http://www.nano-lab.com/cooh-functionalized-nanotubes.html. Accessed on September 2014
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of matrials at the nanolevel. Science 311:622–7
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–21
  • Noh JS, Schwarz JA. 1988. Estimation of the point of zero charge of simple oxides by mass titration. J Colliod Interf Sci 130:157–64
  • Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB. 2012. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes. Environ Sci Technol 46:6297–305
  • Pasquini LM, Sekol RC, Taylor AD, Pfefferle LD, Zimmerman JB. 2013. Realizing comparable oxidative and cytotoxic potential of single- and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–83
  • Patel V. 2011. Global carbon nanotubes market-industry beckons. Nanowerk Nanotechnology Spotlight. Available from www.nanowerk.com Accessed on 5 February 2014.
  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N. 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemial interactions. Environ Sci Technol 44:6532–49
  • Popov VN. 2004. Carbon nanotubes: properties and application. Mater Sci Eng R 43:61–102
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. 2007. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51
  • R_Core_Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/. Accessed on September 2014
  • Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, et al. 2013. In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B 1:3918–25
  • Saxena RK, William W, Mcgee JK, Daniels MJ, Boykin E, Gilmour MI. 2007. Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1:291–300
  • Schaefer DW, Zhao J, Brown JM, Anderson DP, Tomlin DW. 2003. Morphology of dispersed carbon single-walled nanotubes. Chem Phys Lett 375:369–75
  • Scown TM, Van Aerle R, Tyler CR. 2010. Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–70
  • Truong L, Harper SL, Tanguay RL. 2011. Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–9
  • Truong L, Zaikova T, Richman EK, Hutchison JE, Tanguay RL. 2012. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology 6:691–9
  • US EPA. 2014. Risk management sustainable technology: nanotechnology. Available from http://www.epa.gov/nrmrl/std/nanotech.html. Accessed on September 2014
  • Usenko CY, Harper SL, Tanguay RL. 2007. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–8
  • Vecitis CD, Zodrow KR, Kang S, Elimelech M. 2010. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–9
  • Voutchkova-Kostal A, Kostal J, Connors KA, Brooks BW, Anastas PT, Zimmerman JB. 2012. Toward rational molecular design for reduced chronic aquatic toxicity. Green Chem 14:1001–8
  • Yeager E. 1984. Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.