1,647
Views
143
CrossRef citations to date
0
Altmetric
Review Article

Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review

, , &
Pages 391-412 | Received 09 Apr 2014, Accepted 14 Jul 2015, Published online: 16 Sep 2015

References

  • Alexander AJ. 2007. Carbon nanotubes structures and compositions: implications for toxicological studies. In: Monteiro-Riviere NA, Tran CL, eds. Nanotoxicology: Characterization, Dosing and Health Effects. New York: Informa Healthcare USA, 7–18
  • Asharani PV, Serina NGB, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S. 2008. Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–9
  • Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER, et al. 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–9
  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–910
  • Beaudoin AR. 1980. Embryology and teratology. In: Baker HJ, Lindsey JR, Weisbroth SH, eds. The Laboratory Rat. II. Research Applications. New York: Academic Press, 75–101
  • Boisen AMZ, Shipley T, Jackson P, Wallin H, Nellemann C, Vogel U, et al. 2013. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells. Reprod Toxicol 41:45–8
  • Brooking J, Davis SS, Illum L. 2001. Transport of nanoparticles across the rat mucosa. J Drug Target 9:267–79
  • Bucher JR, Hailey JR, Roycroft JR, Haseman JK, Sills RC, Brumbein SL, et al. 1999. Inhalation toxicity and carcinogenicity studies of cobalt sulfate. Toxicol Appl Pharmacol 59:56–67
  • Buerki-Thurnherr T, von Mandach U, Wick P. 2012. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med Wky 142:w13559
  • Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, et al. 2013. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 10:21
  • Carrero-Sánchez JC, Ellas AL, Mancilla R, Arrellin G, Terrones H, Laclette JP, et al. 2006. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6:1609–16
  • Carter RE, Taylor WF. 1980. Identification of a particular amphibole asbestos fiber in tissue of persons exposed to a high oral intake of the mineral. Environ Res 21:85–91
  • Chen Y, Hu X, Sun J, Zhou Q. 2015. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. [Epub ahead of print]DOI:10.3109/17435390.2015.1005032
  • Cheng C, Cheng SH. 2012. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomed 7:3731–9
  • Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, et al. 2009. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio retio). Toxicol Appl Pharmacol 235:216–25
  • Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–16
  • Cunningham HM, Pontefract RD. 1974. Placental transfer of asbestos. Nature 249:177–8
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, et al. 2007. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419–24
  • Donaldson K, Murphy F, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5
  • El-Sayed YS, Shimizu R, Oneda A, Takeda K, Umezawa M. 2015. Carbon nanoparticle exposure induces immune activation in male offspring mice. Toxicology 327:53–61
  • Ema M, Aoyama H, Arima A, Asano Y, Chihara K, Endoh K, et al. 2013a. Historical control data on prenatal developmental toxicity studies in rabbits. Congenit Anom 52:155–61
  • Ema M, Endoh K, Fukushima R, Fujii S, Hara H, Hirata-Koizumu M, et al. 2014. Historical control data on developmental toxicity studies in rodents. Congenit Anom 54:150–61
  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. 2010. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52
  • Ema M, Naya M, Horimoto M, Kato H. 2013b. Developmental toxicity of diesel exhaust: a review of studies in experimental animals. Reprod Toxicol 42:1–17
  • ENRHES (Engineered Nanoparticles: Review of Health and Environmental Safety) 2009. European Commission. Available at: http://ihcp.jrc.ec.europa.eu/whats-new/enhres-final-report. Accessed on 4 August 2014
  • Erdely A, Liston A, Salmen-Muniz R, Hulderman T, Young SH, Zeidler-Erdely PC, et al. 2011. Identification of systemic markers from a pulmonary carbon nanotube exposure. J Occup Environ Med 53:S80–6
  • Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, et al. 2008. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Mol Biol 38:57–67
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. 2009. Oxidative damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117:703–8
  • Fu C, Liu T, Li L, Liu H, Liang Q, Meng X. 2015. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials 40:23–31
  • Fujitani T, Hojo M, Inomata A, Ogata A, Hirose A, Nishimura T, et al. 2014. Teratogenicity of asbestos in mice. J Toxicol Sci 39:363–70
  • Fujitani T, Ohyama K, Hirose A, Nishimura T, Nakae D, Ogata A. 2012. Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. J Toxicol Sci 37:81–9
  • Grodzik M, Sawosz F, Sawosz E, Hotowy A, Wiezbicki M, Kutwin M, et al. 2013. Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and l-glutamine on molecular responses in chicken embryo pectoral muscle. Int J Mol Sci 14:23033–44
  • Guo YY, Zhang J, Zheng YF, Yang J, Zhu XQ. 2011. Cytotoxic and genotoxic effects of multi-walled carbon nanotubes on human umbilical vein endothelia cells in vitro. Mutat Res 721:184–91
  • Hankin SM, Peters SAK, Poland CA, Foss Hansen S, Holmqvist J, Ross BL, et al. 2011. Specific Advice on Fulfilling Information Requirements for Nanomaterials under REACH (RIP-oN 2) – Final Project Report. RNC/RIP-oN2/FPR/FINAL, 01 July 2011, European Commition. Available at: http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon2.pdf. Accessed on 30 January 2015
  • Hansen JM, Harris C. 2012. Redox control of teratogenesis. Reprod Toxicol 35:165–79
  • Haque AK, Ali I, Vrazel DM. 2001. Chrysotile asbestos fibers detected in the newborn pups following gavage feeding of pregnant mice. J Toxicol Environ Health Part A 62:23–31
  • Haque AK, Vrazel DM. 1998. Transplacental transfer of asbestos in pregnant mice. Bull Environ Contam Toxicol 60:620–5
  • Hemmingsen JG, Hougaard KS, Talsness C, Wellejus A, Loft S, Wallin H, et al. 2009. Prenatal exposure to diesel exhaust particles on the male reproductive system in mice. Toxicology 264:61–8
  • Holson JF, Nemec MD, Stump DG, Kaufman LE, Lindström P, Varsho BJ. 2006. Significance, reliability, and interpretation of developmental and reproductive toxicity study findings. In: Hood RD, ed. Developmental and Reproductive Toxicology – A Practical Approach, 2nd ed. Boca Raton: CRC Press, 329–424
  • Hood RD, Miller DB. 2006. Maternally mediated effects on development. In: Hood RD, ed. Developmental and Reproductive Toxicology-A Practical Approach, 2nd ed. Boca Raton: CRC Press, 93–124
  • Hougaard KS, Campagnolo L. 2012. Reproductive toxicity of engineered nanoparticles. In: Fadeel B, Shevedova AA, Pietroiusti A, eds. Adverse Effects of Engineered Nanoparticles. Amsterdam: Elsevier, 225–48
  • Hougaard KS, Fadeel B, Gulumian M, Kagan VE, Savolainen K. 2011. Developmental toxicity of engineered nanoparticles. In: Gupta R, ed. Reproductive and Developmental Toxicology. San Diego: Academic Press/Elsevier, 269–90
  • Hougaard KS, Jackson HP, Kyjovska ZO, Birkedal RK, De Temmerman PJ, Brunelli A, et al. 2013. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reprod Toxicol 41:86–97
  • Hougaard KS, Jensen KA, Nordly P, Taxvig C, Vogel U, Saber AT, et al. 2008. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice. Part Fibre Toxicol 5:3
  • Huang X, Zhang F, Sun X, Choi KY, Niu G, Zhang G, et al. 2014. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials 35:856–65
  • Ivani S, Karimi I, Tabatabaei SRF. 2012. Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach. J Toxicol Sci 37:1191–205
  • Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, et al. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol 6:2
  • Jackson P, Hougaard KS, Boisen AMZ, Jacobsen NR, Jensen KA, Møller P, et al. 2012a. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology 6:486–500
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, et al. 2012b. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res 745:73–83
  • Jackson P, Vogel U, Wallin H, Hougaard KS. 2011. Prenatal exposure to carbon black (Printex 90): effects of sexual development and neurofunction. Basic Clin Pharmacol Toxicol 109:434–7
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physic-chemical characteristics. Nanotoxicology 4:207–46
  • Jollie WP. 1990. Development, morphology, and function of the yolk-sac placenta of laboratory rodents. Teratology 41:361–81
  • Karsch F, Battaglia DF, Breen KM, Debus N, Harris TG. 2002. Mechanisms for ovarian cycle disruption by immune/inflammatory stress. Stress 5:101–12
  • Kimmel CA, Price CJ. 1990. Developmental toxicity studies. In: Arnold DL, Grice HC, Krewski DR, eds. Handbook of in vivo toxicity testing. San Diego: Academic Press, 271–301
  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, et al. 2011. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252:1–10
  • Kobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J. 2011. Pulmonary and systemic responses of highly pure and well-dispersed carbon nanotubes after intratracheal instillation. Inhal Toxicol 23:814–28
  • Kyjovska ZO, Boisen JM, Jackson P, Wallin H, Vogel U, Hougaard KS. 2013. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod Toxicol 36:88–97
  • Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. 2012. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol 34:298–307
  • Li JG, Li WX, Xu JY, XQ Cai, Liu RL, Li YJ, et al. 2007. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–21
  • Li Y, Liu Y, Fu Y, Wei T, Guyader LL, Gao G, et al. 2012. The triggering of apoptosis in macrophages by pristine graphene through the MARK and TGF-beta signaling pathways. Biomaterials 33:402–11
  • Liang S, Xu S, Zhang D, He J, Chu M. 2015. Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 9:92–105
  • Lim JH, Kim SH, Lee IC, Moon C, Kim SH, Shin DH, et al. 2011b. Evaluation of maternal toxicity in rats exposed to multi-wall carbon nanotubes during pregnancy. Environ Health Toxicol 26:e2011006
  • Lim JH, Kim SH, Shin IS, Park NH, Moon C, Kang SS, et al. 2011a. Maternal exposure to multi-wall carbon nanotubes does not induce embryo–fetal developmental toxicity in rats. Birth Defects Res Part B 93:69–76
  • Liu XT, Mu XY, Wu XL, Meng LX, Guan WB, Ma YQ, et al. 2014. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Biomed Environ Sci 27:676–83
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8:233–78
  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. 2006. Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–5
  • McAuliffe ME, Perry MJ. 2007. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology 1:204–10
  • McClellan RO, Hesterberg TW, Wall JC. 2012. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology. Regul Toxicol Pharmacol 63:225–58
  • Møller P, Jacobsen NR, Folkmann AK, Danielsen PH, Mikkeksen L, Hemmingsen JG, et al. 2010. Role of oxidative damage in toxicity of particles. Free Radical Res 44:1–46
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, et al. 2009. Oxidative stress and inflammatory response in derma toxicity of single-walled carbon nanotubes. Toxicology 257:161–71
  • Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST. 2008. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103:197–208
  • OECD (Organization for Economic Co-operation and Development). 1995. Test guideline 421. OECD guideline for the testing of chemicals. Reproduction/Developmental Toxicity Screening Test. Paris, OECD 1995. Available at: http://www.oecd-ilibrary.org/docserver/download/9742101e.pdf?expires=1407117230&id=id&accname=guest&checksum=0125640648D0706CD4C71A95D0E9F865. Accessed on 4 August 2014
  • OECD (Organization for Economic Co-operation and Development). 1996. Test guideline 422. OECD guideline for the testing of chemicals. Combined Repeated Dose Toxicity with the Reproduction/Developmental Toxicity Screening Test. Paris, OECD 1996. Available at: http://www.oecd-ilibrary.org/docserver/download/9742201e.pdf?expires=1407117324&id=id&accname=guest&checksum=9381F8D436F860282ABE6B5FA0CA7F64. Accessed on 4 August 2014
  • OECD (Organization for Economic Co-operation and Development). 2007. Test guideline 426. OECD guideline for the testing of chemicals. Developmental Neurotoxicity Study. Paris, OECD 2007. Available at: http://www.keepeek.com/Digital-Asset-Management/oecd/environment/test-no-426-developmental-neurotoxicity-study_9789264067394-en#page1 Accessed on 4 August 2014
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fizpatric J, Ausman K, et al. 2005a. Principles for characterizing the potential human health effects from exposure to nanoparticles: elements of a screening strategy. Part Fibre Toxicol 22:8
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005b. Nanotoxicology: an emerging discipline evolution from studies of ultrafine particles. Environ Health Perspect 113:823–39
  • Oneda A, Umezawa M, Takeda K, Ihara T, Sugamata M. 2014. Effects of maternal exposure to ultrafine carbon black on brain perivascular macrophages and surrounding astrocytes in offspring. PloS One 9:e94336
  • Osei-Kumah A, Smith S, Jurisica I, Caniggia I, Clifton VL. 2011. Sex-specific differences in placental global gene expression in pregnancies complicated by asthma. Placenta 32:570–8
  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. 2009a. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–21
  • Park MVDZ, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, et al. 2009b. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–16
  • Patel-Mandlik K, Millette J. 1983. Accumulation of ingested asbestos fibers in rat tissues over time. Environ Health Perspect 53:197–200
  • Philbrook NA, Walker VK, Afrooz ARMN, Saleh NB, Winn LM. 2011. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reprod Toxicol 32:442–8
  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, et al. 2011. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5:4624–33
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechol 3:423–8
  • Poma A, Colafarina S, Fontecchio G, Chichiriccò G. 2014. Transgenerational effects of NMs. Adv Exp Med Biol 811:235–54
  • Powers CN, Bale AS, Kraft AD, Makris SL, Trecki J, Cowden J, et al. 2013. Developmental neurotoxicity of engineered nanomaterials: identifying research needs to support human health risk assessment. Toxicol Sci 134:225–42
  • Qi W, Bi J, Zhang X, Wang J, Wang J, Liu P, et al. 2014. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy time. Sci Rep 4:4352. DOI: 10.1038/srep04352
  • Reliene R, Hlavacova A, Mahadevan B, Baird WM, Schiestl RH. 2005. Diesel exhaust particles cause increased levels of DNA deletions after transplacental exposure in mice. Mutat Res 570:245–52
  • Reuter U, Heinrich-Hirsch B, Hellwig J, Holzum B, Welsch F. 2003. OECD screening tests 421 (reproduction/developmental toxicity screening test) and 422 (combined repeated dose toxicity with the reproduction/developmental toxicity screening test). Regul Toxicol Pharmacol 38:17–26
  • Roman D, Yasmeen A, Mireuta M, Stiharu I, Moustafa AEA. 2013. Significant toxic role for single-walled carbon nanotubes during normal embryogenesis. Nanomed Nanotechnol Biol Med 9:945–50
  • Saber AT, Lamson JS, Jacobsen NR, Raven-Haren G, Hougaaard KS, Nyendi AN, et al. 2013. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. Plos One 8:e69020
  • Schardein JL. 2000. Principle of teratogenesis applicable to drug and chemical exposure. In: Chemically Induced Birth Defects, 3rd edition, revised and expanded. New York: Marcel Dekker, 1–65
  • Schneider U, Maurer RR. 1977. Asbestos and embryonic development. Teratology 15:273–80
  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–33
  • Shimizu R, Umezawa M, Okamoto S, Onoda A, Uchiyama M, Tachibana K, et al. 2014. Effect of maternal exposure to carbon black nanoparticle during early gestation on the splenic phenotype of neonatal mouse. J Toxicol Sci 39:571–8
  • Singh C, Song W. 2012. Carbon nanotube structure, synthesis, and applications. In: Donaldson K, Poland C, Duffin R, Bonner J, eds. The Toxicology of Carbon Nanotubes. Cambridge: Cambridge University Press, 1–37
  • Stapleton PA, Minarchick VC, Yi J, Engels K, McBride CR, Nurkiewicz TR. 2013. Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol 209:227.e1–11
  • Sumner SCJ, Fennell TR, Snyder RW, Taylor GF, Lewin AH. 2010. Distribution of carbon-14 labeled C60([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J Appl Toxicol 30:354–60
  • Sawosz E, Jaworski S, Kutwin M, Hotowy A, Wierzbicki M, Grodzik M, et al. 2014. Toxicity of pristine graphene in experiments in a chicken embryo model. Int J Nanomed 4:3913–22
  • Stone V, Pozzi-Mucelli S, Tiran L, Aschberger K, Sabella S, Vogel U, et al. 2014. ITS-NANO-Prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:9
  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. 1996. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393:139–45
  • Tyl RW, Crofton K, Moretto A, Moser V, Sheets L, Sobotka TJ. 2008. Identification and interpretation of developmental neurotoxicity effects. A report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicol Teratol 30:349–81
  • Umezawa M, Kudo S, Yanagita S, Shinkai Y, Niki R, Oyabu T, et al. 2011. Maternal exposure to carbon black nanoparticle increases collagen type VIII expression in the kidney of offspring. J Toxicol Sci 36:461–8
  • Usenko CY, Harper SL, Tanguay RL. 2007. In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–8
  • Usenko CY, Harper SL, Tanguay RL. 2008. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229:44–55
  • Utsunomiya S, Jensen K, Keeler GJ, Ewing RC. 2004. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere. Environ Sci Technol 38:2289–97
  • Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, et al. 2008. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90
  • Wang W, Jiang C, Zhu L, Liang N, Liu X, Jia J, et al. 2014. Adsorption of bisphenol A to a carbon nanotubes resulted its endocrine disrupting effect in mice male offspring. Int J Mol Sci 15:15981–93
  • Wells PG, Bhuller Y, Chen CS, Jeng W, Kasapinovic S, Kennedy JC, et al. 2005. Molecullar and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207:S354–66
  • Wierzbicki M, Sawasz E, Grodzik M, Hotowy A, Prasek M, Jaworski S, et al. 2013. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis. Int J Nanomed 8:3427–35
  • Xu S, Zhang Z, Chu M. 2015. Long-term toxicity of reduced graphene oxide nanosheets: effects on female mouse reproductive ability and offspring development. Biomaterials 54:188–200
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–8
  • Yang H, Sun C, Fan Z, Tian X, Yan L, Du L, et al. 2012. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2:847. DOI: 10.1038/srep00847
  • Ye SF, Wu YH, Hou ZQ, Zhang QQ. 2009. ROS and NF-kB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379:643–8
  • Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, et al. 2008. Effect of nanoparticles on the male reproductive system of mice. Int J Androl 32:337–42
  • Yoshida S, Hiyoshi K, Oshio S, Takano H, Takeda K, Ichinose T. 2010. Effect of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil Steril 33:1695–9
  • Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ. 2007. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26:976–9
  • Zucchi FCR, Yao Y, Metz GA. 2012. The secret language of density: stress imprinting and transgeneration origins of disease. Front Genet 3:96. DOI:10.3389/fgene.2012.00096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.