614
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences

, , , , , , , , , & show all
Pages 586-596 | Received 09 Mar 2015, Accepted 01 Oct 2015, Published online: 10 Nov 2015

References

  • Abel G, Szöllösi J, Fachet J. 1991. Phagocytosis of fluorescent latex microbeads by peritoneal macrophages in different strains of mice: a flow cytometric study. Eur J Immunogenet 18:239–45
  • Aude-Garcia C, Villiers C, Candéias SM, Garrel C, Bertrand C, Collin V, et al. 2011. Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein. Cell Mol Life Sci 68:687–96
  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, et al. 2012. Mammalian metallothioneins: properties and functions. Metallomics 4:739–50
  • Barberet P, Incerti S, Andersson F, Delalee F, Serani L, Moretto P. 2009. Technical description of the CENBG nanobeam line. Nucl Instrum Meth B 267:2003–7
  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. 2012. Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol Lett 208:286–92
  • Bell RA, Kramer JR. 1999. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem 18:9–22
  • Brun E, Barreau F, Veronesi G, Fayard B, Sorieul S, Chanéac C, et al. 2014. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part Fibre Toxicol 11:13
  • Carmona A, Devès G, Ortega R. 2008. Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques. Anal Bioanal Chem 390:1585–94
  • Carrière M, Gouget B, Gallien JP, Avoscan L, Gobin R, Verbavatz JM, Khodja H. 2005. Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis. Nucl Instrum Meth B 231:268–73
  • Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, et al. 2012. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330–8
  • Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636–53
  • Dineley KE, Votyakova TV, Reynolds IJ. 2003. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:563–70
  • dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–44
  • Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ. 2005. Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mat 17:6042–52
  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR. 2009. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–90
  • Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM. 2007. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J Biol Chem 282:24373–80
  • Hamilton JA. 1980. Macrophage stimulation and the inflammatory response to asbestos. Environ Health Perspect 34:69–74
  • Hedley DW, Chow S. 1994. Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry 15:349–58
  • Jiang X, Miclăus T, Wang L, Foldbjerg R, Sutherland DS, Autrup H, et al. 2015. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–9
  • Johnson LV, Walsh ML, Chen LB. 1980. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–4
  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H. 2011. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–8
  • Kim B, Park CS, Murayama M, Hochella MF. 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–14
  • Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. 2011. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 726:129–35
  • Kittler S, Greulich C, Diendorf J, Köeller M, Epple M. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mat 22:4548–54
  • Lemire J, Mailloux R, Appanna VD. 2008. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J Appl Toxicol 28:175–82
  • Levard C, Hotze EM, Lowry GV, Brown GE Jr. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–14
  • Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE Jr. 2011. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–6
  • Liu J, Pennell KG, Hurt RH. 2011. Kinetics and mechanisms of nanosilver oxysulfidation. Environ Sci Technol 45:7345–53
  • Maxwell JA, Teesdale WJ, Campbell JL. 1995. The Guelph-PIXE software package-II. Nucl Instrum Meth B 95:407–21
  • Mayer M. 2002. Ion beam analysis of rough thin films. Nucl Instrum Meth B 194:177–86
  • Meister A. 1988. Glutathione metabolism and its selective modification. J Biol Chem 263:17205–8
  • Mulley G, Jenkins AT, Waterfield NR. 2014. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS One 9:e94409
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–64
  • Oh N, Park JH. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 1:51–63
  • Park EJ, Yi J, Kim Y, Choi K, Park K. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–8
  • Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA. 2013. Toxicity of silver nanoparticles in macrophages. Small 9:2576–84
  • Ratte HT. 1999. Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108
  • Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, et al. 2012. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000
  • Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. 2009. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 5:162–9
  • Schleicher U, Bogdan C. 2009. Generation, culture and flow-cytometric characterization of primary mouse macrophages. Methods Mol Biol 531:203–24
  • Setyawati MI, Yuan X, Xie J, Leong DT. 2014. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 35:6707–15
  • Singh RP, Ramarao P. 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–59
  • Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–54
  • Tian L, Lawrence DA. 1996. Metal-induced modulation of nitric oxide production in vitro by murine macrophages: lead, nickel, and cobalt utilize different mechanisms. Toxicol Appl Pharmacol 141:540–7
  • Triboulet S, Aude-Garcia C, Armand L, Collin-Faure V, Chevallet M, Diemer H, et al. 2015. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages. PLoS One 10:e0124496
  • Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, et al. 2013. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics 12:3108–22
  • Veronesi G, Aude-Garcia C, Kieffer I, Gallon T, Delangle P, Herlin-Boime N, et al. 2015. Exposure-dependent Ag + release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages. Nanoscale 7:7323–30
  • Wang L, Zhang T, Li P, Huang W, Tang J, Wang P, et al. 2015. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 9:6532–47
  • Xiu Z-M, Ma J, Alvarez PJ. 2011. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–8
  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–5
  • Yilma AN, Singh SR, Dixit S, Dennis VA. 2013. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int J Nanomedicine 8:2421–32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.