296
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties

, &
Pages 780-793 | Received 03 Feb 2015, Accepted 15 Nov 2015, Published online: 05 Feb 2016

References

  • Arts JHE, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, et al. 2014. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol 70:492–506
  • Bakshi MS, Zhao L, Smith R, Possmayer F, Petersen NO. 2008. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J 94:855–68
  • Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Yu LE. 2013. The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials 34:5439–52
  • Bauer S, Schmuki P, von der Mark K, Park J. 2012. Engineering biocompatible implant surfaces. part I: materials and surfaces. Prog Mater Sci 58:261–326
  • Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. 2011. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63:141–63
  • Bennett WD, Scheuch G, Zeman KL, Brown JS, Kim C, Heyder J, Stahlhofen W. 1998. Bronchial airway deposition and retention of particles in inhaled boluses: effect of anatomic dead space. J Appl Physiol 85:685–94
  • Bianco A, Kostarelos K, Prato M. 2005. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–9
  • Borm P, Cassee RF, Oberdörster G. 2015. Lung Particle overload: old school - new insights? Part Fibre Toxicol 12:110
  • Braakhuis HM, Park MVDZ, Gosens I, De Jong WH, Cassee FR. 2014. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 11:18
  • Brouwer DH. 2012. Control banding approaches for nanomaterials. Ann Occup Hyg 56:506–14
  • Brouwer DH, Van Duuren-Stuurman B, Berges M, Bard D, Jankowska E, Moehlmann C, et al. 2013. Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanoparticle Res 15:2090
  • Bruinink A, Wang J, Wick P. 2015. Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–75
  • Burello E. 2013. Profiling the biological activity of oxide nanomaterials with mechanistic models. Comput Sci Discov 6:014009
  • Burello E, Worth AP. 2011. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–35
  • Burello E. 2015. Computational design of safer nanomaterials. Environ Sci Nano 2:454–62
  • Chithrani BD, Ghazani AA, Chan WCW. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–8
  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, Macnee W, et al. 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–77
  • Cone RA. 2009. Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85
  • Del Castillo AMP. 2013. Nanomaterials and Workplace Health & Safety. What are the Issues for Workers? Brussels: European Trade Union Institute
  • Dhuria SV, Hanson LR, Frey IIWH. 2010. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–73
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65:2078–86
  • Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Österle W, et al. 2011. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analyt Bioanalyt Chem 400:1367–73
  • Duuren-Schuurman B, Vink S, Brouwer D, Kroese D, Heussen H, Verbist K, et al. 2011. Stoffenmanager Nano: Description of the conceptual control banding model TNO Report V9216. Available at: https://nano.stoffenmanager.nl/public/factsheets/STMNano_%20Bevindingendocument.pdf
  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. 2006. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–8
  • Elder A, Vidyasagar S, DeLouise L. 2009. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:434–50
  • European Centre for Ecotoxicology and Toxicology of Chemicals – ECETOC. 2013. Pooly Soluble Particles/Lung Overload. ECETOC Technical Report No. 122). Brussels: ECETOC AISBL
  • Fan Q, Wang YE, Zhao X, Loo JSC, Zuo YY. 2011. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 5:6410–16
  • Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, et al. 2011. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–73
  • Geiser M. 2010. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulmon Drug Deliv 23:207–17
  • Geiser M, Kreyling WG. 2010. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2
  • Hasleton PS. 1972. The internal surface of the human lung. J Anatom 112:391–400
  • Höck J, Epprecht T, Furrer E, Gautschi M, Hofmann H, Höhener K, et al. 2013. Guidelines on the Precautionary Matrix for Synthetic Nanomaterials. Berne: Federal Office of Public Health and Federal Office for the Environment, Version 3.0
  • Hock LM, Burkhardt S, Strauss V, Gamer AO, Wiench K, Ravenzwaay B, Landsiedel R. 2009. Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol 21:102–18
  • Hoet PHM, Gilissen L, Nemery B. 2001. Polyanions protect against the in vitro pulmonary toxicity of polycationic paint components associated with the ardystil syndrome. Toxicol Appl Pharmacol 175:184–90
  • Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, et al. 2011. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–700
  • Huang JLB, Xie J, Chen K, Cheng Z, Chen XLX. 2010. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–60
  • Hussein T, Löndahl J, Paasonen P, Koivisto AJ, Petäjä T, Hämeri K, et al. 2013. Modeling regional deposited dose of submicron aerosol particles. Sci Total Environ 458460:140–9
  • ICRP. 1994. Human respiratory tract model for radiological protection: a report of a Task Group of the International Commission on Radiological Protection. ICRP Publication 66. Ann ICRP 24:1–482
  • Jachak A, Lai SK, Hida K, Suk JS, Markovic N, Biswal S, et al. 2012. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 6:614–22
  • Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, et al. 2012. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6:4147–56
  • Koivisto AJ, Lyyränen J, Auvinen A, Vanhala E, Hämeri K, Tuomi T, Jokiniemi JB. 2012. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhal Toxicol 24:839–49
  • Kreyling WG, Blanchard JD, Godleski JJ, Haeussermann S, Heyder J, Hutzler P, et al. 1999. Anatomic localization of 24- and 96-h particle retention in canine airways 4. J Appl Physiol 87:269–84
  • Kreyling WG, Scheuch G. 2000. Clearance of particles deposited in the lungs. In: Heyder J, Gehr P, eds. Particle-Lung Interactions. New York: Marcel Dekker, 323–76
  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. 2012. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–30
  • Kuempel E, Castranova V, Geraci C, Schulte P. 2012. Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res 14:1029
  • Kuijpers E, Bekker C, Brouwer D, Le Feber M, Fransman W. 2016. Understanding and modelling workers’ exposure: Systematic review and data-analysis of emission potential for NOAA. J Occup Environ Hyg, submitted for publication
  • Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y, Cone R, et al. 2007. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104:1482–7
  • Lai SK, Wang Y, Hanes J. 2009. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–71
  • Landsiedel R, Fabian E, Ma-Hock L, Wohlleben W, Wiench K, Oesch F, et al. 2012. Toxico-/biokinetics of nanomaterials. Arch Toxicol 86:1021–60
  • Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. 2012. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–57
  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. 2013. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–44
  • Lucchini RG, Dorman DC, Elder A, Veronesi B. 2012. Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 33:838–41
  • Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, et al. 2011. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–44
  • Monteiro-Riviere NA, Olderburg SJ, Inman AO. 2010. Interactions of aluminium nanoparticles with human epidermal keratinocytes. J Appl Toxicol 30:276–85
  • Morrow PE. 1988. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol 10:369–84
  • Möller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, et al. 2008. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med 177:426–32
  • Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. 2008. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:L817–29
  • Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K. 2011. Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–8
  • National Institute for Occupational Safety and Health (NIOSH). 2013. Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes (Publication No. 2014-102). Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH)
  • National Institute for Public Health and the Environment (RIVM). 2002. Multiple Path Particle Dosimetry Model (MPPD v 1.0): A Model for Human and Rat Airway Particle Dosimetry (No. 650010030). Bilthoven, The Netherlands: RIVA
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57
  • NIOSH. 2011. Current intelligence bulletin 63, occupational exposure to titanium dioxide (Publication no. 2011-160). Cincinnati, OH: U.S. National Institute for Occupational Safety and Health, DHHS (NIOSH)
  • NIOSH. 2013. Current intelligence bulletin 65, occupational exposure to carbon nanotubes and nanofibers (Publication no. 2013-145). Cincinnati, OH, U.S. National Institute for Occupational Safety and Health, DHHS (NIOSH)
  • Norde W. 2008. My voyage of discovery to proteins in flatland and beyond. Colloids Surf B Biointerfaces 61:1–9
  • Oberdörster G. 1995. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol 27:123–35
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39
  • Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA. 2001. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 81:1930–7
  • Ostiguy C, Riediker M, Troisfontaines P. 2010. Development of a specific control banding tool for nanomaterials. ANSES. French agency for food, environmental and occupational health and safety. Request no. 2008-SA-0407. Available at http://www.anses.fr/Documents/AP2008sa0407RaEN.pdf. Accessed on 10 September 2014
  • Pauluhn J. 2011. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology 279:176–88
  • Rezwan, K, Studart, AR, Vörös, J, Gauckler, LJ. 2005. Change of Ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B. 109:14469–74
  • Ruge CA, Schaefer UF, Herrmann J, Kirch J, Cañadas O, Echaide M, et al. 2012. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One, 7:0040775
  • Scheuch G, Stahlhofen W, Heyder J. 1996. An approach to deposition and clearance measurements in human airways. J Aerosol Med 9:35–41
  • Schleh C, Kreyling WG, Lehr C. 2013. Pulmonary surfactant is indispensable in order to simulate the in vivo situation. Part Fibre Toxicol 10:6
  • Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, et al. 2011. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expos Sci Environ Epidemiol 21:450–63
  • Schulte PA, Geraci CL, Hodson LL, Zumwalde RD, Kuempel ED, Murashov V, et al. 2013. Overview of risk management for engineered nanomaterials. J Phys Conf Ser 429:1
  • Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, et al. 2009. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of janus? Pharmacol Ther 121:192–204
  • Simko M, Nosske D, Kreyling WG. 2014. Metrics, dose, and dose concept: the need for a proper dose concept in the risk assessment of nanoparticles. Int J Environ Res Public Health 11:4026–48
  • Snipes MB. 1989. Long-term retention and clearance of particles inhaled by mammalian species. Crit Rev Toxicol 20:175–211
  • Stahlhofen W, Scheuch G, Bailey MR. 1995. Investigations of retention of inhaled particles in the human bronchial tree. Radiat Protect Dosimetry 60:311–19
  • Stark WJ. 2011. Nanoparticles in biological systems. Angew Chem Int Ed Engl50:1242–58
  • Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, et al. 2014. ITS-NANO-prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol 11:9
  • Van Duuren-Stuurman B, Vink SR, Verbist KJM, Heussen HGA, Brouwer DH, Kroese DED, et al. 2012. Stoffenmanager nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg 56:525–41
  • Van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. 2009. comparing fate and effects of three particles of different surface properties: nano-TiO(2), pigmentary TiO(2) and quartz. Toxicol Lett 186:152–9
  • Verma A, Stellacci F. 2010. Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21
  • Vogler EA. 1998. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117
  • Vranic S, Garcia-Verdugo I, Darnis C, Sallenave J, Boggetto N, Marano F, et al. 2013. Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute curosurf®. Environ Sci Pollut Res 20:2761–70
  • Wang X, Xia T, Ntim SA, Ji Z, George S, Meng H, et al. 2010. Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano 4:7241–52
  • Worth A, Burello E. 2015. A rule for designing safer nanomaterials: do not interfere with the cellular redox equilibrium. Nanotoxicology 9:116–17
  • WWICS. (2011). The project on emerging nanotechnologies: consumer product inventory. Available at: http://www.nanotechproject.org/cpi/products/. Accessed on 27 December 2013
  • Xia T, Kovochich M, Liong M, Zink JI, Nel AE. 2008. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96
  • Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, et al. 2011a. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–35
  • Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, et al. 2011b. Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5:9074–81
  • Yan L, Zhao F, Li S, Hu Z, Zhao Y. 2011. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3:362–82
  • Zalk DM, Paik YS, Swuste P. 2009. Evaluating the Control Banding Nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res 11:1685–704
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–68
  • Zhang Y, Bai Y, Yan B. 2010. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15:428–35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.