762
Views
39
CrossRef citations to date
0
Altmetric
Review Article

MRI-based functional neuroimaging in ALS: An update

, &
Pages 258-268 | Received 07 Apr 2008, Published online: 18 Nov 2009

References

  • Brooks BR, Bushara K, Khan A, Hershberger J, Wheat JO, Belden D, et al. Functional magnetic resonance imaging (fMRI) clinical studies in ALS: paradigms, problems and promises. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000; 1: 23–32
  • Jezzard P, Buxton RB. The clinical potential of functional magnetic resonance imaging. J Magn Reson Imaging. 2006; 23: 787–93
  • Weiller C, May A, Sach M, Buhmann C, Rijntjes M. Role of functional imaging in neurological disorders. J Magn Reson Imaging. 2006; 23: 840–50
  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005; 28: 377–401
  • Ward NS. Neural plasticity and recovery of function. Prog Brain Res. 2005; 150: 527–35
  • Teasell R, Bayona N, Salter K, Hellings C, Bitensky J. Progress in clinical neurosciences: stroke recovery and rehabilitation. Can J Neurol Sci. 2006; 33: 357–64
  • Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007; 82: 163–201
  • Rossini PM, Altamura C, Ferreri F, Melgari JM, Tecchio F, Tombini M, et al. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Eura Medicophys. 2007; 43: 241–54
  • Cohen Kadosh R, Walsh V. Cognitive neuroscience: rewired or crosswired brains?. Curr Biol. 2006; 16: 962–3
  • Sathian K, Lacey S. Journeying beyond classical somatosensory cortex. Can J Exp Psychol. 2007; 61: 254–64
  • Leigh PN, Simmons A, Williams S, Williams V, Turner M, Brooks D. Imaging: MRS/MRI/PET/SPECT: summary. Amyotroph Lateral Scler Other Motor Neuron Disord. 2002; 3: 75–80
  • Berger H. Hans Berger on the electroencephalogram of man (In German). In: Arch F Psychiatr. 1929; 87: 527–70
  • Cohen D. Magnetoencephalography: evidence of magnetic fields produced by alpha rhythm currents. Science. 1968; 161: 784–6
  • Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975; 16: 210–24
  • Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975; 114: 89–98
  • Pauling L, Coryell CD. The magnetic properties and structure of haemoglobin, oxyhaemoglobin and carbonmonoxyhaemoglobin. Proc Natl Acad Sci USA. 1936; 22: 210–6
  • Frahms J, Fransson P, Krüger G. Magnetic resonance imaging of human brain function. Modern techniques in neuroscience research, U Winhorst, H Johanssen. Springer, Heidelberg 1999
  • Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990; 14: 68–78
  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992; 89: 5675–9
  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992; 89: 5951–5
  • Kim SG, Ugurbil K. Functional magnetic resonance imaging of the human brain. J Neurosci Methods. 1997a; 74: 229–43
  • Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004; 22: 1517–31
  • Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990; 87: 9868–72
  • Kim SG, Ugurbil K. Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med. 1997b; 38: 59–65
  • Di Salle F, Formisano E, Linden DE, Goebel R, Bonavita S, Pepino A, et al. Exploring brain function with magnetic resonance imaging. Eur J Radiol. 1999; 30: 84–94
  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001; 412: 150–7
  • van Geuns RJ, Wielopolski PA, de Bruin HG, Rensing BJ, van Ooijen PM, Hulshoff M, et al. Basic principles of magnetic resonance imaging. Prog Cardiovasc Dis. 1999; 42: 149–56
  • Edelman RR, Wielopolski P, Schmitt F. Echo-planar MR imaging. Radiology. 1994; 192: 600–12
  • Kwong KK. Functional magnetic resonance imaging with echo-planar imaging. Magn Reson Q. 1995; 11: 1–20
  • Schmitt F, Stehling MK, Turner R. Echo-planar imaging theory, technique and application. Springer, Berlin 1998
  • Roberts TP, Mikulis D. Neuro MR: principles. J Magn Reson Imaging. 2007; 26: 823–37
  • Turner R, Howseman A, Rees GE, Josephs O, Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res. 1998; 123: 5–12
  • Triantafyllou C, Hoge RD, Kruger G, Wiggins CJ, Potthast A, Wiggins GC, et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage. 2005; 26: 243–50
  • Norris DG. Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging. 2006; 23: 794–807
  • Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA. 1998; 95: 773–80
  • Josephs O, Henson RNA. Event-related functional magnetic resonance imaging: modelling, inference and optimization. Phil Trans R Soc London. 1999; 354: 1215–28
  • Strange BA, Portas CM, Dolan R, Holmes AP, Friston KJ. Random effects analyses for event-related fMRI. Neuroimage. 1999; 9: 36
  • Mechelli A, Price CJ, Henson RN, Friston KJ. Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage. 2003a; 18: 798–805
  • Mechelli A, Henson RN, Price CJ, Friston KJ. Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage 2003b; 18: 806–10
  • Ashburner J, Friston KJ. Spatial transformation of images. Human brain function, RSJ Frackowiak, KJ Friston, C Frith, R Dolan, JC Mazziotta. Academic Press, USA 1997; 43–58
  • Woods RP, Dapretto M, Sicotte NL, Toga AW, Mazziotta JC. Creation and use of a Talairach-compatible atlas for accurate, automated, non-linear intersubject registration, and analysis of functional imaging data. Hum Brain Mapp. 1999; 8: 73–9
  • Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart 1988
  • Evans AC, Collins DL, Milner B. An MRI-based stereotactic atlas from 250 young normal subjects. J Soc Neurosci. 1992; 18: 343–61
  • Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Salinas F, Evans A, Zilles K, et al. Bias between MNI and Talairach coordinates analysed using the ICBM-152 brain template. Hum Brain Mapp. 2007; 28: 1194–205
  • Brett M, Johnsrude IS, Owen AM. The problem of functional localization in the human brain. Nat Rev Neurosci. 2002; 3: 243–9
  • Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited again. Neuroimage. 1995; 2: 173–82
  • Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991; 11: 690–9
  • Friston, KJ. Introduction: Experimental design and statistical parametric mapping. RSJ Frackowiak, Friston, KJ, Frith, C, Dolan, R, Friston, KJ, Price, CJ, , et al. Human brain function2nd edn. Academic Press; 2003.
  • Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map. 1995a; 2: 189–210
  • Friston KJ, Frith C, Turner R, Frackowiak RSJ. Characterizing evoked haemodynamics with fMRI. Neuroimage. 1995b; 2: 157–65
  • Holmes AP, Poline JB, Friston KJ. Characterizing brain images with the general linear model. Human brain function, RSJ Frackowiak, KJ Friston, C Frith, R Dolan, JC Mazziotta. Academic Press, USA 1997; 59–84
  • Friston KJ, Jezzard P, Turner R. Analysis of functional MRI time-series. Hum Brain Mapp. 1994; 1: 153–71
  • Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, Frackowiak RSJ, et al. Analysis of fMRI time series revisited. Neuroimage. 1995c; 2: 45–53
  • Friston KJ, Frith C, Frackowiak RSJ, Turner R. Characterizing dynamic brain responses with fMRI. Neuroimage. 1995d; 2: 166–72
  • Baudendistel K, Schad LR, Friedlinger M, Wenz F, Schröder J, Lorenz WJ. Post-processing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager. Magn Reson Imaging. 1995; 13: 701–7
  • Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference in neuroimaging: theory. Neuroimage. 2002a; 16: 465–83
  • Friston KJ, Glaser DE, Henson RNA, Kiebel S, Phillips C, Ashburner J. Classical and Bayesian inference in neuroimaging: applications. Neuroimage. 2002b; 16: 484–512
  • Penny WD, Kiebel SJ, Friston KJ. Variational Bayesian inference for fMRI time series. Neuroimage. 2003a; 19: 727–41
  • Penny, WD, Friston, KJ. Classical and Bayesian inference. RSJ Frackowiak, Friston, KJ, Frith, C, Dolan, R, Friston, KJ, Price, CJ, , et al, Human brain function2nd edn. Academic Press;2003.
  • Penny WD, Friston KJ. Classical and Bayesian inference in fMRI. Advanced image processing in magnetic resonance imaging, L Landini. Marcel Dekker. 2004
  • Konrad C, Henningsen H, Bremer J, Mock B, Deppe M, Buchinger C, et al. Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res. 2002; 143: 51–6
  • Han J, Ma L. Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chin Med Sci J. 2006; 21: 228–33
  • Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Jarosz JM, et al. Altered cortical activation during a motor task in ALS: evidence for involvement of central pathways. J Neurol. 2007; 254: 1260–7
  • Schoenfeld MA, Tempelmann C, Gaul C, Kühnel GR, Düzel E, Hopf JM, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol. 2005; 252: 944–52
  • Kew JJM, Leigh PN, Playford ED, Passingham RE, Goldstein LH, Frackowiak RS, et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain. 1993a; 116: 655–80
  • Kew JJM, Brooks DJ, Passingham RE, Rothwell JC, Frackowiak RS, Leigh PN. Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study. Neurology. 1994; 44: 1101–10
  • Lulé D, Diekmann V, Kassubek J, Kurt A, Birbaumer N, Ludolph AC, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair. 2007a; 21: 518–26
  • Konrad C, Jansen A, Henningsen H, Sommer J, Turski PA, Brooks BR, et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res. 2006; 172: 361–9
  • Tessitore A, Esposito F, Monsurro MR, Graziano S, Panza D, Russo A, et al. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull. 2006; 69: 489–94
  • Stanton BR, Williams VC, Leigh PN, Williams SC, Blain CR, Giampietro VP, et al. Cortical activation during motor imagery is reduced in amyotrophic lateral sclerosis. Brain Res. 2007; 1172: 145–51
  • Brownell B, Oppenheimer DR, Hughes JT. The central nervous system in motor neuron disease. J Neurol Neurosurg Psychiatry. 1970; 33: 338–57
  • Isaacs JD, Dean AF, Shaw CE, Al-Chalabi A, Mills KR, Leigh PN. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder?. J Neurol Neurosurg Psychiatry. 2007; 78: 750–3
  • Mai R, Facchetti D, Micheli A, Poloni M. Quantitative electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1998; 106: 383–6
  • Pugdahl K, Fuglsang-Frederiksen A, de Carvalho M, Johnsen B, Fawcett PR, Labarre-Vila A, et al. Generalized sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. 2007; 78: 746–9
  • Pekkonen E, Osipova D, Laaksovirta H. Magnetoencephalographic evidence of abnormal auditory processing in amyotrophic lateral sclerosis with bulbar signs. Clin Neurophysiol. 2004; 115: 309–15
  • Münte TF, Tröger MC, Nusser I, Wieringa BM, Johannes S, Matzke M. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. J Neurol. 1998; 245: 206–10
  • Vieregge P, Wauschkuhn B, Heberlein I, Hagenah J, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis: a study of event-related EEG potentials. Brain Res Cogn Brain Res. 1999; 8: 27–35
  • Pinkhardt EH, Jürgens R, Becker W, Mölle M, Born J, Ludolph AC, et al. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol. 2008; 255: 532–8
  • Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychological and positron emission tomography study. Acta Neurol Scand. 1992; 85: 81–9
  • Kew JJ, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain. 1993; 116: 1399–423
  • Abrahams S, Goldstein LH, Simmons A, Brammer M, Williams SC, Giampietro V, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain. 2004; 127: 1507–17
  • Abrahams S, Goldstein LH, Kew JJ, Brooks DJ, Lloyd CM, Frith CD, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. 1996; 119: 2105–20
  • Lulé D, Kurt A, Jürgens R, Kassubek J, Diekmann V, Kraft E, et al. Emotional responding in amyotrophic lateral sclerosis. J Neurol. 2005; 252: 1517–24
  • Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997; 62: 464–72
  • Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999; 53: 1665–70
  • Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002; 59: 1077–9
  • Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U, Graf M, Uttner I, Muche R, et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J Neurol. 2005; 252: 772–81
  • Piquard A, Le Forestier N, Baudoin-Madec V, Delgadillo D, Salachas F, Pradat PF, et al. Neuropsychological changes in patients with primary lateral sclerosis. Amyotroph Lateral Scler. 2006; 7: 150–60
  • Anzai E, Shiozawa Z, Shindo K, Tsunoda S, Koizumi K, Uchiyama G. 123I-iodoamphetamine single photon emission computed tomography in three patients with amyotrophic lateral sclerosis. Kaku Igaku. 1990; 27: 863–7
  • Tanaka M, Kondo S, Hirai S, Sun X, Yamagishi T, Okamoto K. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J Neurol Sci. 1993; 120: 22–8
  • Lulé D, Diekmann V, Anders S, Kassubek J, Kübler A, Ludolph AC, et al. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis. J Neurol. 2007b; 254: 519–27
  • Mitsumoto H, Ulug AM, Pullman SL, Gooch CL, Chan S, Tang MX, et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 2007; 68: 1402–10
  • Ward M. Biomarkers for Alzheimer's disease. Expert Rev Mol Diagn. 2007; 7: 635–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.