680
Views
37
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Effect of genetic background on onset and disease progression in the SOD1-G93A model of amyotrophic lateral sclerosis

, , , , , , & show all
Pages 302-310 | Received 11 Oct 2011, Accepted 29 Jan 2012, Published online: 08 May 2012

References

  • Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet Journal of Rare Diseases. 2009;4:3.
  • Worms PM. The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci. 2001;191:3–9.
  • Ludolph AC, Jesse S. Review: evidence based drug treatment in amyotrophic lateral sclerosis and upcoming clinical trials. Therapeutic Advances in Neurological Disorders. 2009; 2:319–26.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, . Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72:245–56.
  • Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.
  • Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, . Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13:1396–403.
  • Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, . Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol. 1997;41:210–21.
  • Andersen PM, Nilsson P, Keranen ML, Forsgren L, Hagglund J, Karlsborg M, . Phenotypic heterogeneity in motor neuron disease patients with Cu/Zn superoxide dismutase mutations in Scandinavia. Brain. 1997;120: 1723–37.
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, . Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364:59–62.
  • Gurney ME, Pu H, Chiu AY, dal Canto MC, Polchow CY, Alexander DD, . Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science. 1994;264:1772–5.
  • Miana-Mena FJ, Muñoz MJ, Yagüe G, Mendez M, Moreno M, Ciriza J, . Optimal methods to characterize the G93A mouse model of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6:55–62.
  • Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol. 2008;85:94–134.
  • Heiman-Patterson TD, Deitch JS, Blankenhorn EP, Erwin KL, Perreault MJ, Alexander BK, . Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. J Neurol Sci. 2005;236:1–7.
  • Heiman-Patterson TD, Sher RB, Blankenhorn EA, Alexander G, Deitch JS, Kunst CB, . Effect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers. Amyotroph Lateral Scler. 2011;12:79–86.
  • Acevedo-Arozena A, Kalmar B, Essa S, Ricketts T, Joyce P, Kent R, . A comprehensive assessment of the SOD1-G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Model Mech. 2011;4: 686–700.
  • Hadano S, Yoshii Y, Otomo A, Kunita R, Suzuki-Utsunomiya K, Pan L, . Genetic background and gender effects on gross phenotypes in congenic lines of ALS2/alsin-deficient mice. Neurosci Res. 2010;68:131–6.
  • Heydemann A, Huber JM, Demonbreun A, Hadhazy M, McNally EM. Genetic background influences muscular dystrophy. Neuromuscul Disord. 2005;15:601–9.
  • Achilli F, Bros-Facer V, Williams HP, Banks GT, AlQatari M, Chia R, . An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis Model Mech. 2009;2:359–73.
  • Montagutelli X. Effect of genetic background on the phenotype of mouse mutations. J Am Soc Nephrol. 2000;11: S101–5.
  • Nikodemova M, Watters JJ. Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience. 2011;190:67–74.
  • Moreno-Igoa M, Calvo AC, Penas C, Manzano R, Oliván S, Muñoz MJ, . Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med. 2010;88:297–308.
  • Fischer LR, Culver DG, Davis AA, Tennant P, Wang M, Coleman M, . The WldS gene modestly prolongs survival in the SOD1-G93A FALS mouse. Neurobiol Dis. 2005;19:293–300.
  • Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, . Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2008;31:395–405.
  • Deforges S, Branchu J, Biondi O, Grondard C, Pariset C, Lécolle S, . Motor neuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol (Lond). 2009;587:3561–72.
  • Alexander GM, Erwin KL, Byers N, Deitch JS, Augelli BJ, Blankenhorn EP, . Effect of transgene copy number on survival in the G93A-SOD1 transgenic mouse model of ALS. Brain Res Mol Brain Res. 2004;130:7–15.
  • Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci. 2009;10: 519–29.
  • Valero-Cabré A, Navarro X. H reflex restitution and facilitation after different types of peripheral nerve injury and repair. Brain Res. 2001;919:302–12.
  • Mancuso R, Santos-Nogueira E, Osta R, Navarro X. Electrophysiological analysis of a murine model of motor neuron disease. Clin Neurophysiol. 2011;122:1660–70.
  • García-Alías G, Verdú E, Forés J, López-Vales R, Navarro X. Functional and electrophysiological characterization of photochemical graded spinal cord injury in the rat. J Neurotrauma. 2003;20:501–10.
  • Penas C, Casas C, Robert I, Fores J, Navarro X. Cytoskeletal and activity-related changes in spinal motor neurons after root avulsion. J Neurotrauma. 2009;26:763–79.
  • Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, . Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185:232–40.
  • McHanwell S, Biscoe TJ. The localization of motor neurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci. 1981;293:477–508.
  • Crosio C, Valle C, Casciati A, Iaccarino C, Carrì MT. Astroglial inhibition of NF-κB does not ameliorate disease onset and progression in a mouse model for amyotrophic lateral sclerosis (ALS). PLoS ONE. 2011;6:e17187.
  • Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, . Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci. 2006;26:8774–86.
  • Ludolph AC, Bendotti C, Blaugrund E, Chio A, Greensmith L, Loeffler J-P, . Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph Lateral Scler. 2010;11:38–45.
  • Ozdinler PH, Benn S, Yamamoto TH, Güzel M, Brown RH, Macklis JD. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1-G93A transgenic ALS mice. J Neurosci. 2011;31:4166–77.
  • Zang DW, Cheema SS. Degeneration of corticospinal and bulbospinal systems in the superoxide dismutase 1(G93A G1H) transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett. 2002;332:99–102.
  • Dupuis L, Loeffler J-P. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Current Op Pharmacol. 2009;9:341–6.
  • Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.