152
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Inappropriately chelated iron in the cerebrospinal fluid of amyotrophic lateral sclerosis patients

, , , , , & show all
Pages 357-362 | Received 08 Dec 2011, Accepted 07 Feb 2012, Published online: 16 Mar 2012

References

  • Strong M, Rosenfield J. Amyotrophic lateral sclerosis. A review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:136–43.
  • Manfredi G, Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion. 2005;5:77–87.
  • Julien JP, Beaulieu JM. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J Neurol Sci. 2000;180:7–14.
  • Shaw PJ, Ince PG. Glutamate excitotoxicity and amyotrophic lateral sclerosis. J Neurol. 1997;244:S3–14.
  • Bolanos JP, Moro MA, Lizasoain I, Almeida A. Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv Drug Deliv Rev. 2009;61:1299–315.
  • Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Remarkable increase in cerebrospinal fluid 3–nytrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1999;46:129–31.
  • Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with sporadic form of amyotrophic lateral sclerosis. Neurosci Lett. 1999;260:204–6.
  • Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, . Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69:2064–74.
  • Ilieva EV, Ayala V, Jove M, Dalfó E, Cacabelos D, Povedano M, . Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain. 2007;130:3111–23.
  • Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sütterlin C, Malhotra V, Lipton SA. A Golgi fragmentation pathway in neurodegeneration. Neurobiol Dis. 2008;29:221–31.
  • Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1998;44:696–9.
  • Morimoto S, Kuzuhara S, Kokubo Y. Increased oxidative stress in patients with amyotrophic lateral sclerosis/ Parkinsonism-dementia complex in the Kii peninsula, Japan. Mov Disord. 2009;24:123–6.
  • Spasojević I, Stević Z, Nikolić-Kokić A, Jones DR, Blagojević D, Spasić MB. Different roles of radical scavengers: ascorbate and urate in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep. 2010; 15:81–6.
  • Spasojević I, Mojović M, Stević Z, Spasić SD, Jones DR, Morina A, . Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid. Redox Rep. 2010;15:29–35.
  • Halliwell B, Gutteridge JMC, editors. Free Radicals in Biology and Medicine. Oxford: Oxford University Press; 2007.
  • Liu D, Wen J, Liu J, Li L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J. 1999;13:2318–28.
  • Lenter C, editor. Geigy Scientific Tables. Caldwell: West Ciba-Geigy, 1981.
  • Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, . Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology. 1993; 189:843–6.
  • Cheung G, Gawal MJ, Cooper PW, Farb RI, Ang LC, Gawal MJ. Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology. 1995;194: 263–70.
  • Hecht MJ, Fellner F, Fellner C, Hilz MJ, Neundörfer B, Heuss D. Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J Neurol Sci. 2002;199:59–65.
  • Santillo AF, Skoglund L, Lindau M, Eeg-Olofsson KE, Tovi M, Engler H, . Frontotemporal dementia-amyotrophic lateral sclerosis complex is simulated by neurodegeneration with brain iron accumulation. Alzheimer Dis Assoc Disord. 2009;23:298–300.
  • Yasui M, Ota K, Garruto RM. Concentrations of zinc and iron in the brains of Guamanian patients with amyotrophic lateral sclerosis and Parkinsonism-dementia. Neurotoxicology. 1993;14:445–50.
  • Nikolić Kokić A, Stević Z, Stojanović S, Blagojević DP, Jones DR, Pavlović S, . Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep. 2005;10:265–70.
  • Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics. 2009;2:2.
  • Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol. 2010;84:825–89.
  • Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J Neurol Sci. 1994;124:94–107.
  • Spasojević I. Free radicals and antioxidants at a glance using EPR spectroscopy. Crit Rev Clin Lab Sci. 2011;48: 114–42.
  • Matías-Guiu J, Galán L, García-Ramos R, Barcia JA, Guerrero A. Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis. Neurología. 2010;25:364–73.
  • Drechsel H, Jung G. Peptide siderophores. J Pept Sci. 1998;4:147–81.
  • Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;51:333–55.
  • Bonnet AM, Tell G, Schechter PJ, Grove J, Saint-Hilaire MH, de Smet Y, . Cerebrospinal fluid GABA and homocarnosine concentrations in patients with Friedreich's ataxia, Parkinson's disease, and Huntington's chorea. Mov Disord. 1987;2:117–23.
  • Mollenhauer B, Trenkwalder C. Neurochemical biomarkers in the differential diagnosis of movement disorders. Mov Disord. 2009;24:1411–26.
  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci. 1998;18:8126–32.
  • Iłzecka J, Kocki T, Stelmasiak Z, Turski WA. Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand. 2003;107:412–8.
  • Kaufmann E, Boehm BO, Süssmuth SD, Kientsch-Engel R, Sperfeld A, Ludolph AC, . The advanced glycation end-product N epsilon-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2004;371:226–9.
  • Yoshida Y, Une F, Utatsu Y, Nomoto M, Furukawa Y, Maruyama Y, . Adenosine and neopterin levels in cerebrospinal fluid of patients with neurological disorders. Intern Med. 1999;38:133–9.
  • Museth AK, Brorsson AC, Lundqvist M, Tibell LA, Jonsson BH. The ALS associated mutation G93A in human copper-zinc superoxide dismutation selectively destabilizes the remote metal binding region. Biochemistry. 2009;48: 8817 –29.
  • Tumani H, Teunissen C, Süssmuth S, Otto M, Ludolph AC, Brettschneider J. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diag. 2008;8:479 –94.
  • Ekegren T, Hanrieder J, Bergquist J. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research. J Mass Spectrom. 2008;43: 559–71.
  • Wang Q, Zhang X, Chen S, Zhang X, Zhang S, Youdium M, . Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011; 8:310 –21.
  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Carri MT, Youdim MB. Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 2009;23:3766–79.
  • Bajić A, Zakrzewska J, Godjevac D, Andjus P, Jones DR, Spasić M, . Relevance of the ability of fructose 1, 6-bis(phosphate) to sequester ferrous but not ferric ions. Carbohydr Res. 2011;346:416–20.
  • Menéndez-González M, Pérez-Piñera P, Martínez-Rivera M, Muñiz AL, Vega JA. Immunotherapy for Alzheimer's disease: rational basis in ongoing clinical trials. Curr Pharm Des. 2011;17:508–20.
  • Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, . Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286:34457–67.
  • Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011; 118:658–67.
  • Hasegawa T, Mikoda N, Kitazawa M, LaFerla FM. Treatment of Alzheimer's disease with anti-homocysteic acid antibody in 3xTg-AD male mice. PLoS One. 2010;5:e8593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.