1,858
Views
16
CrossRef citations to date
0
Altmetric
REVIEW

The application of gold nanoparticles as a promising therapeutic approach in breast and ovarian cancer

, , &
Pages 1222-1227 | Received 01 Feb 2015, Accepted 05 Mar 2015, Published online: 14 Apr 2015

References

  • Agarwal R, Kaye SB. 2003. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 3:502–516.
  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. 2010. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 10:2543–2548.
  • Baptista PV. 2012.Could gold nanoprobes be an important tool in cancer diagnostics? Expert Rev Mol Diagn. 12:541–543.
  • Briñas RP, Hu M, Qian L, Lymar ES, Hainfeld JF. 2008. Gold nanoparticle size controlled by polymeric Au (I) thiolate precursor size. J American Chem Soc. 130:975–982.
  • Brongersma ML. 2003. Nanoscale photonics: nanoshells: gifts in a gold wrapper. Nat Mat. 2:296–297.
  • Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases . Nature. 407:249–257.
  • Chattopadhyay N, Cai Z, Pignol J-P, Keller B, Lechtman E, Bendayan R, Reilly RM. 2010. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer. Mol Pharm. 7:2194–2206.
  • Chauhan SC, Kumar D, Jaggi M. 2009. Mucins in ovarian cancer diagnosis and therapy. J Ovarian Res. 2:21.
  • Chen J, Irudayaraj J. 2009. Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano. 3:4071–4079.
  • Chen PC, Mwakwari SC, Oyelere AK. 2008. Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl. 1:45–65.
  • Chen VW, Ruiz B, Killeen JL, Coté TR, Wu XC, Correa CN. 2003. Pathology and classification of ovarian tumors. Cancer. 97:2631–2642.
  • Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. 2012. Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials. 33:2215–2222.
  • Chithrani BD, Ghazani AA, Chan WC. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–668.
  • Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. 2006. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem. 17:603–609.
  • Dreaden EC, Gryder BE, Austin LA, Tene Defo BA, Hayden SC, Pi M, et al. 2012. Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells. Bioconjug Chem. 23:1507–1512.
  • Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. 2009. Tamoxifen− poly (ethylene glycol)− thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconj Chem. 20:2247–2253.
  • Dykman L, Khlebtsov N. 2011. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 3:34.
  • Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M. 2008. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 9:287–291.
  • Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics.2000. CA Cancer J Clin. 50:7–33.
  • Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. 2008. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 60:977–985.
  • Hainfeld JF, Slatkin DN, Smilowitz HM. 2004. The use of gold nanoparticles to enhance radiotherapy in mice. Physics in medicine and biology. 49:N309.
  • Han G, Martin CT, Rotello VM. 2006. Stability of gold nanoparticle‐bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des. 67:78–82.
  • Herzog TJ, Pothuri B. 2006. Ovarian cancer: a focus on management of recurrent disease. Nat Clin Pract Oncol. 3:604–611.
  • Hoek M, Stillman B. 2003. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A. 100:12183–12188.
  • Huang X, El-Sayed MA. 2010. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 1:13–28.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. 2008. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 23:217–228.
  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. 2006. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 110:7238–7248.
  • Jin H, Hong B, Kakar SS, Kang KA. 2008. Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer. Adv Exp Med Biol. 614:275–284.
  • Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari Z, Shanker V, Chakrabarti P, Singh SP. 2012. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Collids Surf B Biointerfaces. 95:195–200.
  • Khlebtsov N, Dykman L. 2011. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 40:1647–1671.
  • Kumar A, Boruah BM, Liang XJ. 2011. Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater. 2011:22.
  • Ledley FD. 1996. Pharmaceutical approach to somatic gene therapy. Pharm Res. 13:1595–1614.
  • Leung DW, Cachianes G, Kuang W-J, Goeddel DV, Ferrara N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 246:1306–1309.
  • Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH.2009. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 274:319–326.
  • Link S, El-Sayed MA. 1999. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 103:4212–4217.
  • Link S, Wang ZL, El-Sayed MA. 1999. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B. 103:3529–3533.
  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. 2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 105:1103–1170.
  • Lu W, Arumugam SR, Senapati D, Singh AK, Arbneshi T, Khan SA, et al. 2010. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano. 4:1739–1749.
  • Mahdihassan S. 1985. Cinnabar-gold as the best alchemical drug of longevity, called Makaradhwaja in India. Am J Chin Med. 13:93–108.
  • Maunsbach AB, Afzelius BA. 1998. Biomedical Electron Microscopy: Illustrated Methods and Interpretations. San Diego, London: Academic Press.
  • McGuire WP, Ozols RF (Eds.). 1998. Chemotherapy of advanced ovarian cancer. Semin Oncol. 25:340–348.
  • McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM. 2001. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc. 123:7626–7629.
  • Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, et al. 2005. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 11:3530–3534.
  • Nahta R, Esteva FJ. 2006. Molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 8:667–674.
  • Ojeda F, Diehl HA, Folch H. 1994.Radiation induced membrane changes and programmed cell death: Possible interrelationships. Scanning Microsc. (3):645–651.
  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L. 2004. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11:169–183.
  • Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, et al. 2008. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express. 16:1590–1599.
  • Patra CR, Bhattacharya R, Mukherjee P. 2010. Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem. 20:547–554.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. 2007. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol. 2:751–760.
  • Qiao Y, Huang X, Nimmagadda S, Bai R, Staedtke V, Foss CA, et al. 2011. A robust approach to enhance tumor-selective accumulation of nanoparticles. Oncotarget. 2:59.
  • Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. 1995. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 104:946–952.
  • Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW. 2010. Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Mol Cell Biol. 30:5260–5272.
  • Richards DG, McMillin DL, Mein EA, Nelson CD. 2002. Gold and its relationship to neurological/glandular conditions. Int J Neurosci. 112:31–53.
  • Risau W. 1997. Mechanisms of angiogenesis. Nature. 386:671–674.
  • Sastry M, Rao M, Ganesh KN. 2002. Electrostatic assembly of nanoparticles and biomacromolecules. Acc Chem Res. 35:847–855.
  • Senger DR, Perruzzi CA, Feder J, Dvorak HF. 1986. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 46:5629–5632.
  • Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R. 2003. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63:1999–2004.
  • Su CH, Sheu HS, Lin CY, Huang CC, Lo YW, Pu YC, et al. 2007. Nanoshell magnetic resonance imaging contrast agents. J Am Chem Soc. 129:2139–2146.
  • Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. 1997. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 74:193–198.
  • Torchilin VP. 2007. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9:E128–E47.
  • Turner J, Koumenis C, Kute TE, Planalp RP, Brechbiel MW, Beardsley D, et al. 2005. Tachpyridine, a metal chelator, induces G2 cell-cycle arrest, activates checkpoint kinases, and sensitizes cells to ionizing radiation. Blood. 106:3191–3199.
  • Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC. 2008. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther. 8:1063–1070.
  • Wang Y, Chen J, Irudayaraj J. 2011. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2 + breast cancer. Acs Nano. 5:9718–9725.
  • Xiong X, Arvizo RR, Saha S, Robertson DJ, McMeekin S, Bhattacharya R, Mukherjee P. 2014. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget. 5:6453–6465.
  • Xu C, Wang B, Sun S. 2009. Dumbbell-like Au− Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 131:4216–4217.
  • Yallapu MM, Jaggi M, Chauhan SC. 2010. Scope of nanotechnology in ovarian cancer. J Ovarian Res. 3:19.
  • Yan H, LaBean TH, Feng L, Reif JH. 2003. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci U S A. 100:8103–8108.
  • Zwicke GL, Mansoori GA, Jeffery CJ. 2012.Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.