1,014
Views
12
CrossRef citations to date
0
Altmetric
Review Article

An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging

, , , , , , , , & show all
Pages 1583-1588 | Received 06 Jun 2015, Accepted 24 Sep 2015, Published online: 19 Nov 2015

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. 2014. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 9:247.
  • Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K, Zarghami N. 2014. Up-regulation of liver enriched transcription factors (HNF4a and HNF6) and liver specific microRNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chem Biol Drug Des. 85:600–608.
  • Benyettou F, Lalatonne Y, Chebbi I, Di Benedetto M, Serfaty JM, Lecouvey M, Motte L.. 2011. A multimodal magnetic resonance imaging nanoplatform for cancer theranostics. Phys Chem Chem Phys. 13:10020–10027.
  • Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. 2003. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med. 49:646–654.
  • Blasiak B, van Veggel FCJM, Tomanek B. 2013. Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater. 2013:148578.
  • Brown MA, Semelka RC. 2015. MRI: Basic Principles and Applications. John Wiley & Sons International Society for Autism Research.
  • Caravan P. 1999. Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 99:2293–2352.
  • Caravan P. 2006. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 35:512–523.
  • Chaudeurge A, Wilhelm C, Chen-Tournoux A, Farahmand P, Bellamy V, Autret G, et al. 2002. Can magnetic targeting of magnetically labeled circulating cells optimize intramyocardial cell retention? Cell Transplant. 21:679–691.
  • Cheon J, Lee JH. 2008. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res. 41:1630–1640.
  • Corot C. 2006. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 58:1471–1504.
  • Cuenca AG. 2006. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459–466.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. 2014. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. [Epub ahead of print]. DOI:https://doi.org/10.3109/21691401.2014.953633.
  • Darrasse L, Ginefri JC. 2003. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie. 85:915–937.
  • Deerinck TJ. 2008. The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol. 36:112–116.
  • Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S. 2014. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif Cells Nanomed Biotechnol. [Epub ahead of print]. DOI:https://doi.org/10.3109/21691401.2014.944646.
  • Elster AD. 1994. Questions and Answers in Magnetic Resonance Imaging. St. Louis: Mosby-Year Book. Inc.
  • Fallahzadeh S, Bahrami H, Akbarzadeh A, Tayarani M. 2010. High-isolation dual-frequency operation patch antenna using spiral defected microstrip structure. IEEE Antennas Wireless Propag Lett. 9:122–124.
  • Fayol M, Chalard B. 2002. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. Adv Mater. 25:2611–2616.
  • Gillis P, Koenig SH. 1987. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med. 5:323–345.
  • Gilmore CK, Spelke ES. 2008. Novel nanomaterials for clinical neuroscience. Cognition. 107:932–945. 933.
  • Goya GF, Grazu V, Ibarra MR. 2008. Magnetic nanoparticles for cancer therapy. Curr Nanosci. 4:1–16.
  • Hachani R, Biskri L, Rossi G, Allaoui A. 2011. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale. 5:11362–11373.
  • Hosseininasab S, Pashaei-Asl R, Khandaghi AA, Nasrabadi HT, Nejati-Koshki K, Akbarzadeh A, et al. 2014. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral insulin delivery. Chem Biol Drug Des. 84:307–315.
  • Huang J, Chakraborty P, Lundstrom CC, Holmden C, Glessner JJG. 2011. Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces. 5:4632–4639.
  • Ito A, Cotsarelis G. 2005. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 100:1–11.
  • Jun YW, Lee JH, Cheon J. 2007. Nanoparticle contrast agents for molecular magnetic resonance imaging. In Nanobiotechnology II: More Concepts and Applications, 321–346.
  • Jung CW, Jacobs P. 1995. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging. 13:661–674.
  • Karnoosh-Yamchi J, Mobasseri M, Akbarzadeh A, Davaran S, Ostad-Rahimi AR, Hamishehkar H, et al. 2014. Preparation of pH sensitive insulin-loaded nano hydrogels and evaluation of insulin releasing in different pH conditions. Mol Biol Rep. 41:6705–6712.
  • Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA, et al. 2014. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnol. 11:S7.
  • Kouhi M, Vahedi A, Akbarzadeh A, Hanifehpour Y, Joo SW. 2014. Investigation of quadratic electro-optic effects and electro absorpti process in GaN/AlGaN spherical quantum dot. Nanoscale Res Lett. 9:131–136.
  • Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K. 1997. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting: pre-clinical profile of SH U555A. Acta Radiol. 38:584–597.
  • Lévy KN, Meehan KB, Temes CM, Yeomans FE, et al. 1993. How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging. 7:373–383.
  • Lodhia J, Saunders C, Shawe-Taylor J, Cristianini N, Watkin C. 2012. Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J. 6:e12.
  • Lu AH, Salabas EL, Schüth F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 46:1222–1244.
  • Massoud TF, Gambhir SS. 2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17:545–580.
  • Nanostructured Materials for Biomedical Applications, 2009: ISBN: 978-81-7895-397-7 Editor: M. C. Tan Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India.
  • Nejati-Koshki K, Mesgari M, Ebrahimi E, Abbasalizadeh F, Fekri Aval S, Khandaghi AA, et al. 2014. Synthesis and in-vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul. 31:815–23.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2:8.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. 2003. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 36:R167.
  • Pantic I. 2012. Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev Adv Mater Sci. 26: 67–73.
  • Pawelczyk E, Jordan EK, Balakumaran A, Chaudhry A, Gormley N, Smith M, et al. 2009. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One. 4:e6712.
  • Penfield JG, Reilly RFJr. 2007. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol. 3:654–668.
  • Rudin M, Weissleder R. 2003. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2:123–131.
  • Ruiz GM, García-Martínez MC, Holgado F. 2006. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale. 5:11400–11408.
  • Sanvicens N, Marco MP. 2008. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol. 26:425–433.
  • Silva A, Silva-Freitas E, Carvalho J, Pontes T, Araújo-Neto R, Silva K, Carriço A, Egito E et al. 2012. Magnetic Particles in Biotechnology: From Drug Targeting to Tissue Engineering. Chapter 13. Intechopen. DOI: https://doi.org/10.5772/30624.
  • Smirnov P. 2008. In vivo single cell detection of tumor-infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magn Reson Med. 60:1292–1297.
  • Son SJ, Bai X, Lee SB. 2007. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. Drug Discov Today. 12:650–656.
  • Sosnovik DE. 2007. The promise of molecular MRI in cardiovascular imaging. Technology and Trends. (2):118–122.
  • Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, et al. 2007. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 7:2422–2427.
  • Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT. 2007. Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials. 28:3797–3806.
  • Wilhelm C, Gazeau F, Bacri JC. 2002. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophy J. 31:118–125.
  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. 2010. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl. 5:73.
  • Yurt Al, Kazancı N. 2008. Investigation of magnetic properties of various complexes prepared as contrast agents for MRI. J Mol Struct. 892:392–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.