4,017
Views
6
CrossRef citations to date
0
Altmetric
Mini Review

New frontiers for dominant osteogenesis imperfecta treatment: gene/cellular therapy approaches

&
Article: 27964 | Received 24 Mar 2015, Accepted 14 Jul 2015, Published online: 31 Aug 2015

References

  • Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011; 7: 540-57.
  • Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979; 16: 101-16.
  • Krassas GE. Idiopathic juvenile osteoporosis. Ann N Y Acad Sci. 2000; 900: 409-12.
  • Slayton RL, Deschenes SP, Willing MC. Nonsense mutations in the COL1A1 gene preferentially reduce nuclear levels of mRNA but not hnRNA in osteogenesis imperfecta type I cell strains. Matrix Biol. 2000; 19: 1-9.
  • Fahiminiya S, Majewski J, Al-Jallad H, Moffatt P, Mort J, Glorieux FH. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res. 2014; 29: 1805-14.
  • Palomo T, Al-Jallad H, Moffatt P, Glorieux FH, Lentle B, Roschger P. Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations. Bone. 2014; 67: 63-70.
  • Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007; 28: 209-21.
  • Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006; 127: 291-304.
  • Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007; 39: 359-65.
  • van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA. PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet. 2009; 85: 521-7.
  • Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010; 86: 551-9.
  • Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010; 86: 389-98.
  • Garbes L, Kim K, Riess A, Hoyer-Kuhn H, Beleggia F, Bevot A. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Hum Genet. 2015; 96: 432-9.
  • Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J. Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat. 2012; 33: 343-50.
  • Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. 2013; 92: 590-7.
  • Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet. 2010; 87: 110-14.
  • Symoens S, Malfait F, D'Hondt S, Callewaert B, Dheedene A, Steyaert W. Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J Rare Dis. 2013; 8: 154
  • Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011; 88: 362-71.
  • Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J. A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012; 91: 349-57.
  • Volodarsky M, Markus B, Cohen I, Staretz-Chacham O, Flusser H, Landau D. A deletion mutation in TMEM38B associated with autosomal recessive osteogenesis imperfecta. Hum Mutat. 2013; 34: 582-6 [PubMed Abstract]
  • Mendoza-Londono R, Fahiminiya S, Majewski J, Tetreault M, Nadaf J, Kannu P. Recessive osteogenesis imperfecta caused by missense mutations in SPARC. Am J Hum Genet. 2015; 96: 979-85.
  • Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014; 20: 670-5.
  • Forlino A, Tani C, Rossi A, Lupi A, Campari E, Gualeni B. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics. 2007; 7: 1877-91.
  • Bianchi L, Gagliardi A, Gioia R, Besio R, Tani C, Landi C. Differential response to intracellular stress in the skin from osteogenesis imperfecta Brtl mice with lethal and non lethal phenotype: a proteomic approach. J Proteomics. 2012; 75: 4717-33.
  • Shapiro JR, Rowe DW. Genetic approach to treatment of osteogenesis imperfecta in Osteogenesis imperfecta. 1st ed2013London, UKElsevier Science and Technology
  • Bargman R, Huang A, Boskey AL, Raggio C, Pleshko N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res. 2010; 51: 123-31.
  • Hoyer-Kuhn H, Semler O, Schoenau E. Effect of Denosumab on the Growing Skeleton in Osteogenesis Imperfecta. J Clin Endocrinol Metab 2014; 99: 3954-5 [PubMed Abstract]10.1210/jc.2014-3072
  • Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 2014; 66: 182-8.
  • Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012; 12: 183-8 [PubMed Abstract]
  • Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2012; 28: 73-80.
  • Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014; 25: 2097-107.
  • Besio R, Forlino A. Treatment options for osteogenesis imperfecta. Expert Opin Orphan D. 2015; 3: 165-81.
  • Grassi G, Marini JC. Ribozymes: structure, function, and potential therapy for dominant genetic disorders. Ann Med. 1996; 28: 499-510.
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000; 404: 293-6.
  • Wang Q, Marini JC. Antisense oligodeoxynucleotides selectively suppress expression of the mutant alpha 2(I) collagen allele in type IV osteogenesis imperfecta fibroblasts. A molecular approach to therapeutics of dominant negative disorders. J Clin Invest. 1996; 97: 448-54.
  • Khillan JS, Li SW, Prockop DJ. Partial rescue of a lethal phenotype of fragile bones in transgenic mice with a chimeric antisense gene directed against a mutated collagen gene. Proc Natl Acad Sci U S A. 1994; 91: 6298-302.
  • Grassi G, Forlino A, Marini JC. Cleavage of collagen RNA transcripts by hammerhead ribozymes in vitro is mutation-specific and shows competitive binding effects. Nucleic Acids Res. 1997; 25: 3451-8.
  • Dawson PA, Marini JC. Hammerhead ribozymes selectively suppress mutant type I collagen mRNA in osteogenesis imperfecta fibroblasts. Nucleic Acids Res. 2000; 28: 4013-20.
  • Toudjarska I, Kilpatrick MW, Niu J, Wenstrup RJ, Tsipouras P. Delivery of a hammerhead ribozyme specifically downregulates mutant type I collagen mRNA in a murine model of osteogenesis imperfecta. Antisense Nucleic Acid Drug Dev. 2001; 11: 341-6.
  • Rousseau J, Gioia R, Layrolle P, Lieubeau B, Heymann D, Rossi A. Allele-specific Col1a1 silencing reduces mutant collagen in fibroblasts from Brtl mouse, a model for classical osteogenesis imperfecta. Eur J Hum Genet. 2013; 22: 667-74.
  • Lindahl K, Rubin CJ, Kindmark A, Ljunggren O. Allele dependent silencing of COL1A2 using small interfering RNAs. Int J Med Sci. 2008; 5: 361-5.
  • Lindahl K, Kindmark A, Laxman N, Astrom E, Rubin CJ, Ljunggren O. Allele dependent silencing of collagen type I using small interfering RNAs targeting 3'UTR Indels – a novel therapeutic approach in osteogenesis imperfecta. Int J Med Sci. 2013; 10: 1333-43.
  • Dalgleish R. The Human Collagen Mutation Database 1998. Nucleic Acids Res. 1998; 26: 253-5.
  • Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata RK, Li Y. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther. 2008; 16: 187-93.
  • Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004; 303: 1198-201.
  • Deyle DR, Khan IF, Ren G, Wang PR, Kho J, Schwarze U. Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol Ther. 2012; 20: 204-13.
  • Cabral WA, Marini JC. High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am J Hum Genet. 2004; 74: 752-60.
  • Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells. 2004; 22: 487-500.
  • Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997; 4: 71-4.
  • Li F, Wang X, Niyibizi C. Distribution of single-cell expanded marrow derived progenitors in a developing mouse model of osteogenesis imperfecta following systemic transplantation. Stem Cells. 2007; 25: 3183-93.
  • Wang X, Li F, Niyibizi C. Progenitors systemically transplanted into neonatal mice localize to areas of active bone formation in vivo: implications of cell therapy for skeletal diseases. Stem Cells. 2006; 24: 1869-78.
  • Pauley P, Matthews BG, Wang L, Dyment NA, Matic I, Rowe DW. Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model. Int Orthop. 2014; 38: 1955-62.
  • Li F, Wang X, Niyibizi C. Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone. 2010; 47: 546-55.
  • Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood. 2008; 111: 1717-25.
  • Jones GN, Moschidou D, Abdulrazzak H, Kalirai BS, Vanleene M, Osatis S. Potential of human fetal chorionic stem cells for the treatment of osteogenesis imperfecta. Stem Cells Dev. 2014; 23: 262-76.
  • Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A. 1998; 95: 1142-7.
  • Panaroni C, Gioia R, Lupi A, Besio R, Goldstein SA, Kreider J. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood. 2009; 114: 459-68.
  • Jones GN, Moschidou D, Lay K, Abdulrazzak H, Vanleene M, Shefelbine SJ. Upregulating CXCR4 in human fetal mesenchymal stem cells enhances engraftment and bone mechanics in a mouse model of osteogenesis imperfecta. Stem Cells Transl Med. 2012; 1: 70-8.
  • Gotherstrom C, Westgren M, Shaw SW, Astrom E, Biswas A, Byers PH. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014; 3: 255-64.
  • Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002; 99: 8932-7.
  • Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005; 79: 1607-14.
  • Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001; 97: 1227-31.
  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WWK, Gordon PL, Neel M. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999; 5: 309-13.
  • Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010; 14: 2190-9.
  • Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001; 169: 12-20.
  • Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999; 401: 517-18.
  • Sun JY, Anand-Jawa V, Chatterjee S, Wong KK. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther. 2003; 10: 964-76.
  • Oliveira S, Storm G, Schiffelers RM. Targeted delivery of siRNA. J Biomed Biotechnol. 2006; 2006: 63675
  • Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A. 2005; 102: 12177-82.
  • Aigner A. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J Biomed Biotechnol. 2006; 2006: 71659
  • Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005; 12: 461-6.
  • Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012; 18: 307-14.
  • Liang C, Guo B, Wu H, Shao N, Li D, Liu J. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med. 2015; 21: 288-94.
  • Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013; 2013: 561098
  • Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008; 118: 491-504 [PubMed Abstract] [PubMed CentralFull Text]
  • Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O'Rear L. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009; 27: 1887-98.
  • Kumar S, Ponnazhagan S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 2007; 21: 3917-27.
  • Guan M, Yao W, Liu R, Lam KS, Nolta J, Jia J. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med. 2012; 18: 456-62.
  • Yao W, Lane NE. Targeted delivery of mesenchymal stem cells to the bone. Bone. 2015; 70: 62-5.
  • Park YJ, Nah SH, Lee JY, Jeong JM, Chung JK, Lee MC. Surface-modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope. J Biomed Mater Res A. 2003; 67: 751-60.
  • Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A. 2014; 111: 10287-92.
  • Zhang Z, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev. 2012; 64: 1129-41.
  • Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009; 206: 2483-96.
  • van der Oost J. Molecular biology. New tool for genome surgery. Science. 2013; 339: 768-70 [PubMed Abstract]