11,170
Views
125
CrossRef citations to date
0
Altmetric
Review Articles

Dengue viruses – an overview

& (Professor)
Article: 19839 | Received 05 Oct 2012, Accepted 16 Jul 2013, Published online: 30 Aug 2013

References

  • Westaway EG, Brinton MA, Gaidamovich S, Horzinek MC, Igarashi A, Kaariainen L, etal. Flaviviridae. Intervirology. 1985; 24: 183–92.
  • Wang E, Ni H, Xu R, Barrett AD, Watowich SJ, Gubler DJ, etal. Evolutionary relationships of endemic/ epidemic and sylvatic dengue viruses. J Virol. 2000; 74: 3227–34.
  • Guzman MG, Kouri G. Dengue: an update. Lancet Infect Dis. 2002; 2: 33–42.
  • WHO. Dengue haemorrhagic fever. Diagnosis, treatment, prevention and control. 1997; Geneva: WHO. 12–23.
  • Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002; 10: 100–3.
  • WHO. Dengue: guidelines for diagnosis, treatment, prevention and control – New ed. 2009; Geneva: World Health Organization.
  • Henchal EA, Putnak JR. The dengue viruses. Clin Microbiol Rev. 1990; 3: 376–96.
  • Rush B, Garrison-Morton. An account of the bilious remitting fever, as it appeared in Philadelphia in the summer and autumn of the year 1780. Medical inquiries and observations . 1789; Philadelphia: Pritchard & Hall. 104.
  • Tsai CJ, Kuo CH, Chen PC, Changcheng CS. Upper gastrointestinal bleeding in dengue fever. Am J Gastroenterol. 1991; 86: 33–5.
  • Thomas SJ, Strickman D, Vaughn DW. Dengue epidemiology: virus epidemiology, ecology, and emergence. Adv Virus Res. 2003; 61: 235–89.
  • Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol. 2000; 14: 31–7.
  • Ooi E-E, Gubler DJ, Hanley KA, Weaver SC. Dengue virus-mosquito interactions. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 143–56.
  • Singh KR, Paul SD. Isolation of dengue viruses in Aedes albopictus cell cultures. Bull World Health Organ. 1969; 40: 982–3.
  • Pavri KM, Ghosh SN. Complement-fixation tests for simultaneous isolation and identification of dengue viruses, using tissue cultures. Bull World Health Organ. 1969; 40: 984–6.
  • Stalder J, Reigel F, Flaviano A, Koblet H. Infection of the Aedes albopictus cell clone C6/36 with Semliki Forest virus. Experientia. 1981; 37: 1229.
  • McCall P, Kittayapong P. Control of dengue vectors: tools and strategies. Report of the ScientificWorking Group on Dengue. 2006; Geneva:World Health Organization. (TDR/SWG/08).
  • McCall PJ, Lenhart A. Dengue control. Lancet Infect Dis. 2008; 8: 7–9.
  • Pang X, Zhang M, Dayton AI. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV. BMC Microbiol. 2001; 1: 28.
  • Pang X, Zhang M, Dayton AI. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol. 2001; 1: 18.
  • Alvarez DE, Lodeiro MF, Filomatori CV, Fucito S, Mondotte JA, Gamarnik AV. Structural and functional analysis of dengue virus RNA. Novartis Found Symp. 2006; 277: 120–32. discussion 132–5, 251–3.
  • Gamarnik A, Hanley KA, Weaver SC. Role of the dengue virus 5’ and 3’ untranslated regions in viral replication. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 55–78.
  • Padmanabhan R, Strongin AY, Hanley KA, Weaver SC. Translation and processing of the dengue virus polyprotein. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 13–34.
  • Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5’ and 3’ terminal regions in flavivirus RNA synthesis and viral replication. Virology. 2008; 374: 170–85.
  • Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, etal. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 1997; 3: 866–71.
  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, etal. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003; 197: 823–9.
  • Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008; 4: e17.
  • Chen ST. Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008; 453: 672–6.
  • Watson AA, Lebedev AA, Hall BA, Fenton-May AE, Vagin AA, Dejnirattisai W, etal. Structural flexibility of the macrophage dengue virus receptor CLEC5A: implications for ligand binding and signaling. J Biol Chem. 2011; 286: 24208–24218.
  • Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004; 427: 313–9.
  • Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995; 375: 291–8.
  • Heinz FX, Allison SL. Flavivirus structure and membrane fusion. Adv Virus Res. 2003; 59: 63–97.
  • Johnson AJ, Guirakhoo F, Roehrig JT. The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology. 1994; 203: 241–9.
  • Lee E, Weir RC, Dalgarno L. Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology. 1997; 232: 281–90.
  • Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, etal. Dendritic-cell-specific ICAM3- grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 2003; 4: 723–8.
  • Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006; 80: 11418–31.
  • Mackenzie JM, Jones MK, Young PR. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology. 1996; 220: 232–40.
  • Miller S, Sparacio S, Bartenschlager R. Subcellular localization and membrane topology of the dengue virus type 2 Non-structural protein 4B. J Biol Chem. 2006; 281: 8854–63.
  • Salonen A, Ahola T, Kaariainen L. Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol. 2005; 285: 139–73.
  • Lobigs M. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A. 1993; 90: 6218–22.
  • Yamshchikov VF, Compans RW. Regulation of the late events in flavivirus protein processing and maturation. Virology. 1993; 192: 38–51.
  • Pethel M, Falgout B, Lai CJ. Mutational analysis of the octapeptide sequence motif at the NS1-NS2A cleavage junction of dengue type 4 virus. J Virol. 1992; 66: 7225–31.
  • Bazan JF, Fletterick RJ. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology. 1989; 171: 637–9.
  • Miller S, Romero-Brey I, Bartenschlager R, Hanley KA, Weaver SC. The dengue virus replication complex. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 35–54.
  • Preugschat F, Strauss JH. Processing of nonstructural proteins NS4A and NS4B of dengue 2 virus in vitro and in vivo. Virology. 1991; 185: 689–97.
  • Winkler G, Maxwell SE, Ruemmler C, Stollar V. Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane- associated after dimerization. Virology. 1989; 171: 302–5.
  • Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, etal. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002; 186: 1165–8.
  • Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S, Diamond MS, etal. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med. 2010; 207: 793–_806.
  • Schlesinger JJ, Brandriss MW, Walsh EE. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol. 1987; 68: 853–7.
  • Lin CF, Wan SW, Cheng HJ, Lei HY, Lin YS. Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 2006; 19: 127–32.
  • Stadler K, Allison SL, Schalich J, Heinz FX. Proteolytic activation of tick-borne encephalitis virus by furin. J Virol. 1997; 71: 8475–81.
  • Guirakhoo F, Heinz FX, Mandl CW, Holzmann H, Kunz C. Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J Gen Virol. 1991; 72: 1323–9.
  • Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology. 1992; 191: 921–31.
  • Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, etal. Structures of immature flavivirus particles. EMBO J. 2003; 22: 2604–13.
  • Rigau-Perez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV, etal. Dengue and dengue haemorrhagic fever. Lancet. 1998; 352: 971–7.
  • WHO. Prevention and control of dengue and dengue haemorrhagic fever. Comprehensive Guidelines. 1999; New Delhi: World Health Organization, Regional Publication. Vol. 29.
  • Schwartz E, Mileguir F, Grossman Z, Mendelson E. Evaluation of ELISA-based sero-diagnosis of dengue fever in travelers. J Clin Virol. 2000; 19: 169–73.
  • Wang WK, Chen HL, Yang CF, Hsieh SC, Juan CC, Chang SM, etal. Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin Infect Dis. 2006; 43: 1023–30.
  • Hang VT, Nguyet NM, Trung DT, Tricou V, Yoksan S, Dung NM. Diagnostic accuracy of NS1 ELISA and lateral flow rapid tests for dengue sensitivity, specificity and relationship to viraemia and antibody responses. PLoS Negl Trop Dis. 2009; 3: e360.
  • Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, etal. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000; 181: 2–9.
  • Young PR, Hilditch PA, Bletchly C, Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Microbiol. 2000; 38: 1053–7.
  • Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol. 2002; 40: 376–81.
  • Lapphra K, Sangcharaswichai A, Chokephaibulkit K, Tiengrim S, Piriyakarnsakul W, Chakorn T, etal. Evaluation of an NS1 antigen detection for diagnosis of acute dengue infection in patients with acute febrile illness. Diagn Microbiol Infect Dis. 2008; 60: 387–91.
  • Schilling S, Ludolfs D, Van An L, Schmitz H. Laboratory diagnosis of primary and secondary dengue infection. J Clin Virol. 2004; 31: 179–84.
  • Dussart P, Petit L, Labeau B, Bremand L, Leduc A, Moua D. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis. 2008; 2: e280.
  • Phuong HL, Thai KT, Nga TT, Giao PT, Hung le Q, Binh TQ, etal. Detection of dengue nonstructural 1 (NS1) protein in Vietnamese patients with fever. Diagn Microbiol Infect Dis. 2009; 63: 372–8.
  • Duong V, Ly S, Lorn Try P, Tuiskunen A, Ong S, Chroeung N. Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity. PLoS Negl Trop Dis. 2011; 5: e1244.
  • Gibbons RV, Kalanarooj S, Jarman RG, Nisalak A, Vaughn DW, Endy TP, etal. Analysis of repeat hospital admissions for dengue to estimate the frequency of third or fourth dengue infections resulting in admissions and dengue hemorrhagic fever, and serotype sequences. Am J Trop Med Hyg. 2007; 77: 910–3.
  • Raviprakash K, Apt D, Brinkman A, Skinner C, Yang S, Dawes G, etal. A chimeric tetravalent dengue DNA vaccine elicits neutralizing antibody to all four virus serotypes in rhesus macaques. Virology. 2006; 353: 166–73.
  • Konishi E, Kosugi S, Imoto J. Dengue tetravalent DNA vaccine inducing neutralizing antibody and anamnestic responses to four serotypes in mice. Vaccine. 2006; 24: 2200–7.
  • Wisseman CL Jr, Sweet BH, Rosenzweig EC, Eylar OR. Attenuated living type I dengue vaccines. Am J Trop Med Hyg. 1963; 12: 620–3.
  • Guirakhoo F, Kitchener S, Morrison D, Forrat R, McCarthy K, Nichols R, etal. Live attenuated chimeric yellow fever dengue type 2 (ChimeriVax-DEN2) vaccine: Phase I clinical trial for safety and immunogenicity: effect of yellow fever preimmunity in induction of cross neutralizing antibody responses to all 4 dengue serotypes. Hum Vaccin. 2006; 2: 60–7.
  • Kanesa-Thasan N, Edelman R, Tacket CO, Wasserman SS, Vaughn DW, Coster TS, etal. Phase 1 studies of Walter Reed Army Institute of Research candidate attenuated dengue vaccines: selection of safe and immunogenic monovalent vaccines. Am J Trop Med Hyg. 2003; 69(6 Suppl): 17–23.
  • Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, etal. Safety and immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of serotype concentration, ratio, and multiple doses. Am J Trop Med Hyg. 2002; 66: 264–72.
  • Edelman R, Tacket CO, Wasserman SS, Vaughn DW, Eckels KH, Dubois DR, etal. A live attenuated dengue-1 vaccine candidate (45AZ5) passaged in primary dog kidney cell culture is attenuated and immunogenic for humans. J Infect Dis. 1994; 170: 1448–55.
  • Sun W, Edelman R, Kanesa-Thasan N, Eckels KH, Putnak JR, King AD. Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am J Trop Med Hyg. 2003; 69(6 Suppl): 24–31.
  • Men R, Bray M, Clark D, Chanock RM, Lai CJ. Dengue type 4 virus mutants containing deletions in the 3’ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol. 1996; 70: 3930–7.
  • Guirakhoo F, Arroyo J, Pugachev KV, Miller C, Zhang ZX, Weltzin R, etal. Construction, safety, and immunogenicity in nonhuman primates of a chimeric yellow fever-dengue virus tetravalent vaccine. J Virol. 2001; 75: 7290–304.
  • Durbin AP, Whitehead SS. Next-generation dengue vaccines: novel strategies currently under development. Viruses. 2011; 3: 1800–14.
  • Gubler DJ. The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. Ann Acad Med Singap. 1998; 27: 227–34.
  • Halstead SB, Deen J. The future of dengue vaccines. Lancet. 2002; 360: 1243–5.
  • Wills BA, Nguyen MD, Ha TL, Dong TH, Tran TN, Le TT, etal. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med. 2005; 353: 877–89.
  • LaBauve ME, Kuhn RJ, Hanley KA, Weaver SC. Novel therapeutic approaches for dengue disease. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 239–64.
  • Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998; 11: 480–96.
  • Guzman MG, Kouri G, Bravo J, Valdes L, Vazquez S, Halstead SB. Effect of age on outcome of secondary dengue 2 infections. Int J Infect Dis. 2002; 6: 118–24.
  • Guzman MG, Kouri G, Valdes L, Bravo J, Vazquez S, Halstead SB. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev Panam Salud Publica. 2002; 11: 223–7.
  • Halstead SB, Streit TG, Lafontant JG, Putvatana R, Russell K, Sun W, etal. Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg. 2001; 65: 180–3.
  • Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, etal. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg. 2006; 74: 449–_56.
  • Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis. 2003; 9: 800–9.
  • Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, etal. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 1997; 230: 244–51.
  • Burke DS, Nisalak A, Johnson DE, Scott RM. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg. 1988; 38: 172–80.
  • Halstead SB, Nimmannitya S, Cohen SN. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med. 1970; 42: 311–28.
  • Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, Salitul V, etal. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The outbreak 1980. Am J Epidemiol. 1984; 120: 653–69.
  • Thein S, Aung MM, Shwe TN, Aye M, Zaw A, Aye K, etal. Risk factors in dengue shock syndrome. Am J Trop Med Hyg. 1997; 56: 566–72.
  • Guzman MG, Sierra B, Kouri G, Farrar J, Simmons C, Hanley KA, Weaver SC. Host and virus determinants of susceptibility and dengue disease severity. Frontiers in dengue virus research. 2010; Norfolk, UK: Caister Academic Press. 79–102.
  • Bravo JR, Guzman MG, Kouri GP. Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Trans R Soc Trop Med Hyg. 1987; 81: 816–20.
  • Ferguson NM, Donnelly CA, Anderson RM. Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc Lond B Biol Sci. 1999; 354: 757–68.
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, etal. Cross-reacting antibodies enhance dengue virus infection in humans. Science. 2010; 328: 745–8.
  • Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, etal. Immature dengue virus: a veiled pathogen?. PLoS Pathog. 2010; 6: e1000718.
  • Guzman MG, Alvarez M, Rodriguez-Roche R, Bernardo L, Montes T, Vazquez S, etal. Neutralizing antibodies after infection with dengue 1 virus. Emerg Infect Dis. 2007; 13: 282–6.
  • Chau TN, Hieu NT, Anders KL, Wolbers M, Lien le B, Hieu LT, etal. Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis. 2009; 200: 1893–900.
  • Pengsaa K, Luxemburger C, Sabchareon A, Limkittikul K, Yoksan S, Chambonneau L, etal. Dengue virus infections in the first 2 years of life and the kinetics of transplacentally transferred dengue neutralizing antibodies in thai children. J Infect Dis. 2006; 194: 1570–6.
  • Azeredo EL, Zagne SM, Santiago MA, Gouvea AS, Santana AA, Neves-Souza PC, etal. Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology. 2001; 204: 494–507.
  • Chakravarti A, Kumaria R. Circulating levels of tumour necrosis factor-alpha & interferon-gamma in patients with dengue & dengue haemorrhagic fever during an outbreak. Indian J Med Res. 2006; 123: 25–30.
  • Nguyen TH, Lei HY, Nguyen TL, Lin YS, Huang KJ, Le BL, etal. Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis. 2004; 189: 221–32.
  • Mustafa AS, Elbishbishi EA, Agarwal R, Chaturvedi UC. Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol. 2001; 30: 229–33.
  • Perez AB, Garcia G, Sierra B, Alvarez M, Vazquez S, Cabrera MV, etal. IL-10 levels in dengue patients: some findings from the exceptional epidemiological conditions in Cuba. J Med Virol. 2004; 73: 230–4.
  • Pinto LM, Oliveira SA, Braga EL, Nogueira RM, Kubelka CF. Increased pro-inflammatory cytokines (TNF-alpha and IL-6) and anti-inflammatory compounds (sTNFRp55 and sTNFR p75) in Brazilian patients during exanthematic dengue fever. Mem Inst Oswaldo Cruz. 1999; 94: 387–94.
  • Yang KD, Wang CL, Shaio MF. Production of cytokines and platelet activating factor in secondary dengue virus infections. J Infect Dis. 1995; 172: 604–5.
  • Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, Suntayakorn S, etal. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis. 2002; 185: 1213–21.
  • Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, Li CM, etal. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology. 2003; 305: 330–8.
  • Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, etal. Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis. 1997; 176: 322–30.
  • Laoprasopwattana K, Libraty DH, Endy TP, Nisalak A, Chunsuttiwat S, Vaughn DW, etal. Dengue virus (DV) enhancing antibody activity in preillness plasma does not predict subsequent disease severity or viremia in secondary DV infection. J Infect Dis. 2005; 192: 510–9.
  • Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, etal. A prospective nested case-control study of dengue in infants: rethinking and refining the antibodydependent enhancement dengue hemorrhagic fever model. PLoS Med. 2009; 6: 1000171.
  • Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, etal. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis. 2004; 189: 990–1000.
  • Halstead SB. Dengue. Lancet. 2007; 370: 1644–52.
  • Alvarez M, Rodriguez-Roche R, Bernardo L, Vazquez S, Morier L, Gonzalez D, etal. Dengue hemorrhagic fever caused by sequential dengue 1–3 virus infections over a long time interval: havana epidemic, 2001–2002. Am J Trop Med Hyg. 2006; 75: 1113–7.
  • Westaway EG, Blok J, Gubler DJ, Kuno G. Taxonomy an evolutionary relationships of flaviviruses. Dengue an dengue hemorrhagic fever. 1997; New York: CABI. 147–74.
  • Barnes WJ, Rosen L. Fatal hemorrhagic disease and shock associated with primary dengue infection on a Pacific island. Am J Trop Med Hyg. 1974; 23: 495–506.
  • Rosen L. The emperor's new lothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am J Trop Med Hyg. 1977; 26: 337–43.
  • Gubler DJ, Suharyono W, Lubis I, Eram S, Gunarso S. Epidemic dengue 3 in central Java, associated with low viremia in man. Am J Trop Med Hyg. 1981; 30: 1094–9.
  • Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006; 75: 886–92.
  • Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990; 174: 479–93.
  • Messer WB, Vitarana UT, Sivananthan K, Elvtigala J, Preethimala LD, Ramesh R, etal. Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am J Trop Med Hyg. 2002; 66: 765–73.
  • Kanakaratne N, Wahala WM, Messer WB, Tissera HA, Shahani A, Abeysinghe N, etal. Severe dengue epidemics in Sri Lanka, 2003–2006. Emerg Infect Dis. 2009; 15: 192–9.
  • Hanley KA, Nelson JT, Schirtzinger EE, Whitehead SS, Hanson CT. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol. 2008; 8: 1.
  • Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, etal. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology. 2007; 358: 402–12.
  • Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, de C, etal. Dengue virus structural differences that correlate with pathogenesis. J Virol. 1999; 73: 4738–47.
  • Kochel TJ, Watts DM, Gozalo AS, Ewing DF, Porter KR, Russell KL. Cross-serotype neutralization of dengue virus in Aotus nancymae monkeys. J Infect Dis. 2005; 191: 1000–4.
  • Bhamarapravati N. Hemostatic defects in dengue hemorrhagic fever. Rev Infect Dis. 1989; 11(Suppl 4): S826–9.
  • Hotta S. Propagation of dengue virus in tissue culture. Acta Trop. 1969; 16: 108–50.
  • Bhamarapravati N, Toochinda P, Boonyapaknavik V. Pathology of Thailand haemorrhagic fever: a study of 100 autopsy cases. Am J Trop Med Parasitol. 1967; 61: 500–10.
  • Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, etal. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol. 2001; 166: 1499–506.
  • Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA. Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J Virol. 2001; 75: 3501–8.
  • Marovich M, Grouard-Vogel G, Louder M, Eller M, Sun W, Wu SJ, etal. Human dendritic cells as targets of dengue virus infection. J Investig Dermatol Symp Proc. 2001; 6: 219–24.
  • Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, etal. Human skin Langerhans cells are targets of dengue virus infection. Nat Med. 2000; 6: 816–20.
  • Johnston LJ, Halliday GM, King NJ. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol. 2000; 114: 560–8.
  • Boonpucknavig S, Boonpucknavig V, Bhamarapravati N, Nimmannitya S. Immunofluorescence study of skin rash in patients with dengue hemorrhagic fever. Arch Pathol Lab Med. 1979; 103(9): 463–6.
  • Sahaphong S, Riengrojpitak S, Bhamarapravati N, Chirachariyavej T. Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health. 1980; 11: 194–_204.
  • Scott RM, Nisalak A, Cheamudon U, Seridhoranakul S, Nimmannitya S. Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. J Infect Dis. 1980; 141: 1–6.
  • Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis. 2004; 189: 1411–8.
  • Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol. 2003; 77: 2578–86.
  • Solomon T, Vaughn DW. Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol. 2002; 267: 171–94.
  • Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis. 2001; 7: 714–21.
  • Xiao SY, Zhang H, Guzman H, Tesh RB. Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). II. Pathology. J Infect Dis. 2001; 183: 1437–44.
  • Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, etal. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology. 2008; 376: 429–35.
  • Marchette NJ, Halstead SB, Falkler WA Jr, Stenhouse A, Nash D. Studies on the pathogenesis of dengue infection in monkeys. 3. Sequential distribution of virus in primary and heterologous infections. J Infect Dis. 1973; 128: 23–30.
  • Bhoopat L, Bhamarapravati N, Attasiri C, Yoksarn S, Chaiwun B, Khunamornpong S, etal. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac J Allergy Immunol. 1996; 14: 107–13.
  • Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Henin D, etal. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol. 1999; 30: 1106–10.
  • Huerre MR, Lan NT, Marianneau P, Hue NB, Khun H, Hung NT, etal. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch. 2001; 438: 107–15.
  • Miagostovich MP, Ramos RG, Nicol AF, Nogueira RM, Cuzzi-Maya T, Oliveira AV, etal. Retrospective study on dengue fatal cases. Clin Neuropathol. 1997; 16: 204–8.
  • Hall WC, Crowell TP, Watts DM, Barros VL, Kruger H, Pinheiro F, etal. Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. Am J Trop Med Hyg. 1991; 45: 408–17.
  • Ramos C, Sanchez G, Pando RH, Baquera J, Hernandez D, Mota J, etal. Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J Neurovirol. 1998; 4: 465–8.
  • Andrews BS, Theofilopoulos AN, Peters CJ, Loskutoff DJ, Brandt WE, Dixon FJ, etal. Replication of dengue and junin viruses in cultured rabbit and human endothelial cells. Infect Immun. 1978; 20: 776–81.
  • Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, etal. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg. 2009; 80: 416–24.
  • Wang L, Chen RF, Liu JW, Lee IK, Lee CP, Kuo HC, etal. DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Negl Trop Dis. 2011; 5: e934.
  • Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, etal. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog. 2007; 3: e183.
  • Whitehorn J, Simmons CP. The pathogenesis of dengue. Vaccine. 2011; 29: 7221–8.
  • Valdes K, Alvarez M, Pupo M, Vazquez S, Rodriguez R, Guzman MG. Human dengue antibodies against structural and nonstructural proteins. Clin Diagn Lab Immunol. 2000; 7: 856–7.
  • Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am J Trop Med Hyg. 1991; 44: 481–93.
  • Roehrig JT, Bolin RA, Kelly RG. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology. 1998; 246: 317–28.
  • Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, etal. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol. 2010; 84: 9227–39.
  • Lok SM, Kostyuchenko V, Nybakken GE, Holdaway HA, Battisti AJ, Sukupolvi-Petty S, etal. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol. 2008; 15: 312–7.
  • Kaufmann B, Nybakken GE, Chipman PR, Zhang W, Diamond MS, Fremont DH, etal. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci U S A. 2006; 103: 12400–4.
  • Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, Chen BR, etal. Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J. 2009; 28: 3269–76.
  • Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, etal. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol. 2008; 82: 6631–43.
  • Lin B, Parrish CR, Murray JM, Wright PJ. Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. Virology. 1994; 202: 885–90.
  • Lok SM, Ng ML, Aaskov J. Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody. J Med Virol. 2001; 65: 315–23.
  • Wang WK, Lin SR, Lee CM, King CC, Chang SC. Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies. J Virol. 2002; 76: 4662–5.
  • Wang WK, Sung TL, Lee CN, Lin TY, King CC. Sequence diversity of the capsid gene and the nonstructural gene NS2B of dengue-3 virus in vivo. Virology. 2002; 303: 181–91.
  • Mehlhop E, Ansarah-Sobrinho C, Johnson S, Engle M, Fremont DH, Pierson TC, etal. Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell Host Microbe. 2007; 2: 417–26.
  • Bokisch VA, Top FH Jr, Russell PK, Dixon FJ, Muller- Eberhard HJ. The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N Engl J Med. 1973; 289: 996–1000.
  • Malasit P. Complement and dengue haemorrhagic fever/shock syndrome. Southeast Asian J Trop Med Public Health. 1987; 18: 316–20.
  • Mentor NA, Kurane I. Dengue virus infection of human T lymphocytes. Acta Virol. 1997; 41: 175–6.
  • Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol. 1999; 73: 3623–9.
  • Mangada MM, Ennis FA, Rothman AL. Quantitation of dengue virus specific CD4+ T cells by intracellular cytokine staining. J Immunol Methods. 2004; 284: 89–97.
  • Bashyam HS, Green S, Rothman AL. Dengue virus-reactive CD8+ T cells display quantitative and qualitative differences in their response to variant epitopes of heterologous viral serotypes. J Immunol. 2006; 176: 2817–24.
  • Imrie A, Meeks J, Gurary A, Sukhbataar M, Kitsutani P, Effler P, etal. Differential functional avidity of dengue virusspecific T-cell clones for variant peptides representing heterologous and previously encountered serotypes. J Virol. 2007; 81: 10081–91.
  • Dong T, Moran E, Vinh Chau N, Simmons C, Luhn K, Peng Y, etal. High pro-inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic T-cells during the course of secondary dengue virus infection. PLoS One. 2007; 2: e1192.
  • Duangchinda T, Dejnirattisai W, Vasanawathana S, Limpitikul W, Tangthawornchaikul N, Malasit P, etal. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc Natl Acad Sci U S A. 2010; 107: 16922–7.
  • An J, Zhou DS, Zhang JL, Morida H, Wang JL, Yasui K. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection. Immunol Lett. 2004; 95: 167–74.
  • Luhn K, Simmons CP, Moran E, Dung NT, Chau TN, Quyen NT, etal. Increased frequencies of CD4+ CD25(high) regulatory T cells in acute dengue infection. J Exp Med. 2007; 204: 979–85.
  • Kurane I, Innis BL, Nimmannitya S, Nisalak A, Rothman AL, Livingston PG, etal. Human immune responses to dengue viruses. Southeast Asian J Trop Med Public Health. 1990; 21: 658–62.
  • Rothman AL, Ennis FA. Immunopathogenesis of dengue hemorrhagic fever. Virology. 1999; 257: 1–6.
  • Zivna I, Green S, Vaughn DW, Kalayanarooj S, Stephens HA, Chandanayingyong D, etal. T cell responses to an HLA-B*07- restricted epitope on the dengue NS3 protein correlate with disease severity. J Immunol. 2002; 168: 5959–65.
  • Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, etal. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003; 9: 921–7.
  • Mangada MM, Rothman AL. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol. 2005; 175: 2676–83.
  • Valdes L, Guzman MG, Kouri G, Delgado J, Carbonell I, Cabrera MV, etal. Epidemiology of dengue and hemorrhagic dengue in Santiago, Cuba 1997. Rev Panam Salud Publica. 1999; 6: 16–25.
  • Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983; 32: 154–6.
  • Guzman MG, Alvarez M, Rodriguez R, Rosario D, Vazquez S, Vald S, etal. Fatal dengue hemorrhagic fever in Cuba, 1997. Int J Infect Dis. 1999; 3: 130–5.
  • Pelaez O, Guzman MG, Kouri G, Perez R, San Martin JL, Vazquez S, etal. Dengue 3 epidemic, Havana, 2001. Emerg Infect Dis. 2004; 10: 719–22.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004; 4: 499–511.
  • Bowie AG, Haga IR. The role of toll-like receptors in the host response to viruses. Mol Immunol. 2005; 42: 859–67.
  • Meylan E, Tschopp J. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol Cell. 2006; 22: 561–9.
  • Severa M, Fitzgerald KA. TLR-mediated activation of type I IFN during antiviral immune responses: fighting the battle to win the war. Curr Top Microbiol Immunol. 2007; 316: 167–92.
  • Anderson R. Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res. 2003; 59: 229–74.
  • Carr JM, Hocking H, Bunting K, Wright PJ, Davidson A, Gamble J, etal. Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol. 2003; 69: 521–8.
  • Espina LM, Valero NJ, Hernandez JM, Mosquera JA. Increased apoptosis and expression of tumor necrosis factoralpha caused by infection of cultured human monocytes with dengue virus. Am J Trop Med Hyg. 2003; 68: 48–53.
  • Charnsilpa W, Takhampunya R, Endy TP, Mammen MP Jr, Libraty DH, Ubol S. Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J Med Virol. 2005; 77: 89–95.
  • Neves-Souza PC, Azeredo EL, Zagne SM, Valls-de-Souza R, Reis SR, Cerqueira DI, etal. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis. 2005; 5: 64.
  • Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol. 2003; 111(2 Suppl): S460–75.
  • Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol. 2008; 53: 287–99.
  • Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, etal. Elevated plasma interleukin- 10 levels in acute dengue correlate with disease severity. J Med Virol. 1999; 59: 329–34.
  • Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Janus J, etal. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest. 1991; 88: 1473–80.
  • Hober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, etal. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg. 1993; 48: 324–31.
  • Iyngkaran N, Yadav M, Sinniah M. Augmented inflammatory cytokines in primary dengue infection progressing to shock. Singap Med J. 1995; 36: 218–21.
  • Juffrie M, Meer GM, Hack CE, Haasnoot K, Sutaryo AJ, Veerman. Inflammatory mediators in dengue virus infection in children: interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. Am J Trop Med Hyg. 2001; 65: 70–5.
  • Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol. 2004; 85: 1801–13.
  • Hober D, Shen L, Benyoucef S, De Groote D, Deubel V, Wattre P. Enhanced TNF alpha production by monocytic-like cells exposed to dengue virus antigens. Immunol Lett. 1996; 53: 115–20.
  • Bethell DB, Flobbe K, Cao XT, Day NP, Pham TP, Buurman WA, etal. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis. 1998; 177: 778–82.
  • Sierra B, Perez AB, Vogt K, Garcia G, Schmolke K, Aguirre E, etal. MCP-1 and MIP-1alpha expression in a model resembling early immune response to dengue. Cytokine. 2010; 52: 175–83.
  • Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996; 17: 138–46.
  • Chen HC, Hofman FM, Kung JT, Lin YD, Wu-Hsieh BA. Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virusinduced hemorrhage. J Virol. 2007; 81: 5518–26.
  • Lei HY, Yeh TM, Liu HS, Lin YS, Chen SH, Liu CC. Immunopathogenesis of dengue virus infection. J Biomed Sci. 2001; 8: 377–88.
  • Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009; 22: 564–81.
  • Kallmann BA, Hummel V, Lindenlaub T, Ruprecht K, Toyka KV, Rieckmann P. Cytokine-induced modulation of cellular adhesion to human cerebral endothelial cells is mediated by soluble vascular cell adhesion molecule-1. Brain. 2000; 123: 687–_97.
  • Madan B, Singh I, Kumar A, Prasad AK, Raj HG, Parmar VS, etal. Xanthones as inhibitors of microsomal lipid peroxidation and TNF-alpha induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs). Bioorg Med Chem. 2002; 10: 3431–6.
  • Dagia NM, Goetz DJ. A proteasome inhibitor reduces concurrent, sequential, and long-term IL-1 beta- and TNF-alpha-induced ECAM expression and adhesion. Am J Physiol Cell Physiol. 2003; 285: C813–22.
  • Javaid K, Rahman A, Anwar KN, Frey RS, Minshall RD, Malik AB. Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res. 2003; 92: 1089–97.
  • Anderson R, Wang S, Osiowy C, Issekutz AC. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol. 1997; 71: 4226–32.
  • Weaver KA, H.a.S.C . Frontiers in dengue virus research. Chapter 6. 2010; Norfolk, UK: Caister Academic Press.
  • Tuiskunen A, Monteil V, Plumet S, Boubis L, Wahlstrom M, Duong V, etal. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol. 2011; 156: 2023–32.
  • Barreto DF, etal. Histopathological and ultrastructural aspects of mice lungs experimentally infected with dengue virus serotype 2. Mem Inst Oswaldo Cruz. 2007; 102: 175–82.
  • Paes MV, Pinhao AT, Barreto DF, Costa SM, Oliveira MP, Nogueira AC, et al. Liver injury and viremia in mice infected with dengue-2 virus. Virology 2005; 338: 236–46..
  • Huang KJ, Li SY, Chen SC, Liu HS, Lin YS, Yeh TM, etal. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J Gen Virol. 2000; 81: 2177–82.
  • Tuiskunen A, Wahlstrom M, Bergstrom J, Buchy P, Leparc-Goffart I, Lundkvist A. Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Virol J. 2011; 8: 398.
  • Atrasheuskaya A, Petzelbauer P, Fredeking TM, Ignatyev G. Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol. 2003; 35: 33–42.
  • Zulueta A, Martin J, Hermida L, Alvarez M, Valdes I, Prado I, etal. Amino acid changes in the recombinant dengue 3 envelope domain III determine its antigenicity and immunogenicity in mice. Virus Res. 2006; 121: 65–73.
  • An J, Kimura-Kuroda J, Hirabayashi Y, Yasui K. Development of a novel mouse model for dengue virus infection. Virology. 1999; 263: 70–7.
  • Lin YL, Liao CL, Chen LK, Yeh CT, Liu CI, Ma SH, etal. Study of dengue virus infection in SCID mice engrafted with human K562 cells. J Virol. 1998; 72: 9729–37.
  • Blaney JE Jr, Johnson DH, Manipon GG, Firestone CY, Hanson CT, Murphy BR, etal. Genetic basis of attenuation of dengue virus type 4 small plaque mutants with restricted replication in suckling mice and in SCID mice transplanted with human liver cells. Virology. 2002; 300: 125–39.
  • Bente DA, Melkus MW, Garcia JV, Rico-Hesse R. Dengue fever in humanized NOD/SCID mice. J Virol. 2005; 79: 13797–9.
  • Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(-/-) gamma(c)(-/-) (RAG-hu) mice. Virology. 2007; 369: 143–52.
  • Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, etal. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995; 154: 180–91.
  • Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, etal. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity. 1995; 2: 223–38.
  • DiSanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A. 1995; 92: 377–81.
  • Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, etal. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood. 1996; 87: 956–67.
  • Ifversen P, Borrebaeck CA. SCID-hu-PBL: a model for making human antibodies?. Semin Immunol. 1996; 8: 243–8.
  • Murphy WJ, Taub DD, Longo DL. The huPBL-SCID mouse as a means to examine human immune function in vivo. Semin Immunol. 1996; 8: 233–41.
  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, etal. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005; 174: 6477–89.
  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, etal. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005; 106: 1565–73.
  • Johnson AJ, Roehrig JT. New mouse model for dengue virus vaccine testing. J Virol. 1999; 73: 783–6.
  • Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol. 2004; 78: 2701–10.
  • Kyle JL, Beatty PR, Harris E. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis. 2007; 195: 1808–17.
  • Huang CY, Butrapet S, Tsuchiya KR, Bhamarapravati N, Gubler DJ, Kinney RM. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol. 2003; 77: 11436–47.
  • Lee E, Wright PJ, Davidson A, Lobigs M. Virulence attenuation of dengue virus due to augmented glycosaminoglycanbinding affinity and restriction in extraneural dissemination. J Gen Virol. 2006; 87: 2791–801.
  • Schul W, Liu W, Xu HY, Flamand M, Vasudevan SG. A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J Infect Dis. 2007; 195: 665–74.
  • Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol. 2006; 80: 10208–17.
  • Stein DA, Huang CY, Silengo S, Amantana A, Crumley S, Blouch RE, etal. Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus. J Antimicrob Chemother. 2008; 62: 555–65.
  • Kyle JL, Balsitis SJ, Zhang L, Beatty PR, Harris E. Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model. Virology. 2008; 380: 296–303.
  • Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol. 2008; 82: 8411–21.