64,902
Views
3,351
CrossRef citations to date
0
Altmetric
Review Articles

Biological properties of extracellular vesicles and their physiological functions

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Article: 27066 | Received 22 Dec 2014, Accepted 03 Oct 2015, Published online: 14 May 2015

References

  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Ann Rev Cell Dev Biol. 2005; 21: 319–46.
  • Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946; 166: 189–97.
  • Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967; 13: 269–88.
  • Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969; 41: 59–72.
  • De Broe M, Wieme R, Roels F. Letter: membrane fragments with koinozymic properties released from villous adenoma of the rectum. Lancet. 1975; 2: 1214–15.
  • Benz EW Jr., Moses HL. Small, virus-like particles detected in bovine sera by electron microscopy. J Natl Cancer Inst. 1974; 52: 1931–4.
  • Dalton AJ. Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J Natl Cancer Inst. 1975; 54: 1137–48.
  • Stegmayr B, Ronquist G. Promotive effect on human sperm progressive motility by prostasomes. Urol Res. 1982; 10: 253–7.
  • Ronquist G, Brody I, Gottfries A, Stegmayr B. An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid: part I. Andrology. 1978; 10: 261–72.
  • Taylor DD, Homesley HD, Doellgast GJ. Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res. 1980; 40: 4064–9.
  • Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P, Bitzer AMet al. Tumor shedding and coagulation. Science. 1981; 212: 923–4.
  • Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol. 1984; 35: 256–63.
  • Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983; 33: 967–78.
  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987; 262: 9412–20.
  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJet al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996; 183: 1161–72.
  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654–9.
  • Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak Pet al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20: 847–56.
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004; 101: 13368–73.
  • Lasser C, Eldh M, Lotvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012; 3037.
  • Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011; 9: 86.
  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005; 17: 879–87.
  • Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate. 2009; 69: 159–67.
  • Lasser C, O'Neil SE, Ekerljung L, Ekstrom K, Sjostrand M, Lotvall J. RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy. 2011; 25: 89–93.
  • Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2 20389, doi: http://dx.doi.org/10.3402/jev.v2i0.20389.
  • Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann Rev Cell Dev Biol. 2014; 30: 255–89.
  • Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJet al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013; 13: 3354–64.
  • Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods. 2013; 56: 293–304.
  • Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010; 9: 197–208.
  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008; 110: 13–21.
  • Atai NA, Balaj L, van Veen H, Breakefield XO, Jarzyna PA, Van Noorden CJet al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013; 115: 343–51.
  • Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DAet al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009; 23: 1541–57.
  • Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJet al. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One. 2012; 7: e42064.
  • Kang D, Oh S, Ahn SM, Lee BH, Moon MH. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res. 2008; 7: 3475–80.
  • Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase Pet al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012; 10: e1001450.
  • Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2 20384, doi: http://dx.doi.org/10.3402/jev.v2i0.20384.
  • Simpson RJ, Kalra H, Mathivanan S. ExoCarta as a resource for exosomal research. J Extracell Vesicles. 2012; 1 18374, doi: http://dx.doi.org/10.3402/jev.v1i0.18374.
  • Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011; 11: 108.
  • Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta Ret al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009; 20: 363–79.
  • Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KAet al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and non-metastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics. 2014; 14: 699–712.
  • Ostergaard O, Nielsen CT, Iversen LV, Jacobsen S, Tanassi JT, Heegaard NH. Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res. 2012; 11: 2154–63.
  • Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013; 12: 587–98.
  • Pallet N, Sirois I, Bell C, Hanafi LA, Hamelin K, Dieude Met al. A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells. Proteomics. 2013; 13: 1108–20.
  • Aatonen MT, Öhman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles. 2014; 3 24692, doi: http://dx.doi.org/10.3402/jev.v3.24692.
  • Bobrie A, Thery C. Exosomes and communication between tumours and the immune system: are all exosomes equal?. Biochem Soc Trans. 2013; 41: 263–7.
  • Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch Pet al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013; 126: 5553–65.
  • Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall Jet al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013; 2 20360, doi: http://dx.doi.org/10.3402/jev.v2i0.20360.
  • Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani Iet al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013; 2 http://dx.doi.org/10.3402/jev.v2i0.20677.
  • Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles. 2013; 2 20424, doi: http://dx.doi.org/10.3402/jev.v2i0.20424.
  • Krishnamoorthy L, Bess JW Jr., Preston AB, Nagashima K, Mahal LK. HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol. 2009; 5: 244–50.
  • Batista BS, Eng WS, Pilobello KT, Hendricks-Munoz KD, Mahal LK. Identification of a conserved glycan signature for microvesicles. J Proteome Res. 2011; 10: 4624–33.
  • Staubach S, Schadewaldt P, Wendel U, Nohroudi K, Hanisch FG. Differential glycomics of epithelial membrane glycoproteins from urinary exovesicles reveals shifts toward complex-type N-glycosylation in classical galactosemia. J Proteome Res. 2012; 11: 906–16.
  • Gerlach JQ, Kruger A, Gallogly S, Hanley SA, Hogan MC, Ward CJet al. Surface glycosylation profiles of urine extracellular vesicles. PLoS One. 2013; 8: e74801.
  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999; 94: 3791–9.
  • Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014; 123: 208–16.
  • Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao Xet al. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem Biophys Res Commun. 2009; 378: 433–8.
  • Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JEet al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res. 2009; 8: 1304–14.
  • Hosseini-Beheshti E, Pham S, Adomat H, Li N, Tomlinson Guns ES. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics. 2012; 11: 863–85.
  • Escrevente C, Grammel N, Kandzia S, Zeiser J, Tranfield EM, Conradt HSet al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS One. 2013; 8: e78631.
  • Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth Jet al. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010; 9: 1324–38.
  • Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008; 31: 1059–62.
  • Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DYet al. Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics. 2011; 11: 2745–51.
  • Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R, Gabius HJet al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 2010; 115: 696–705.
  • Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. J Biol Chem. 2014; 289: 32526–37.
  • Menck K, Scharf C, Bleckmann A, Dyck L, Rost U, Wenzel D et al. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN. J Mol Cell Biol. 2015;7:143–53
  • Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. 2013; 110: 17380–5.
  • Kralj-Iglic V. Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomedicine. 2012; 7: 3579–96.
  • Capraro BR, Yoon Y, Cho W, Baumgart T. Curvature sensing by the epsin N-terminal homology domain measured on cylindrical lipid membrane tethers. J Am Chem Soc. 2010; 132: 1200–1.
  • Hsieh WT, Hsu CJ, Capraro BR, Wu T, Chen CM, Yang Set al. Curvature sorting of peripheral proteins on solid-supported wavy membranes. Langmuir. 2012; 28: 12838–43.
  • Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost Jet al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci USA. 2009; 106: 5622–6.
  • van Meer G, Vaz WL. Membrane curvature sorts lipids. Stabilized lipid rafts in membrane transport. EMBO Rep. 2005; 6: 418–19.
  • Huang KC, Ramamurthi KS. Macromolecules that prefer their membranes curvy. Mol Microbiol. 2010; 76: 822–32.
  • Ramamurthi KS. Protein localization by recognition of membrane curvature. Curr Opin Microbiol. 2010; 13: 753–7.
  • Kralj-Iglič V, Veranič P. Curvature-induced sorting of bilayer membrane constituents and formation of membrane rafts. Adv Planar Lipid Bilayers Liposomes. 2006; 5: 129–49.
  • Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid Fet al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem. 2013; 288: 11649–61.
  • Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg Met al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010; 70: 1668–78.
  • Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol. 2009; 19: 434–46.
  • Hagerstrand H, Mrowczynska L, Salzer U, Prohaska R, Michelsen KA, Kralj-Iglic V et al. Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membrane Biol. 2006; 23: 277–88.
  • Bari R, Guo Q, Xia B, Zhang YH, Giesert EE, Levy Set al. Tetraspanins regulate the protrusive activities of cell membrane. Biochem Biophys Res Commun. 2011; 415: 619–26.
  • Andreu Z, Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014; 5: 442.
  • Arkhipov A, Yin Y, Schulten K. Four-scale description of membrane sculpting by BAR domains. Biophys J. 2008; 95: 2806–21.
  • Yin Y, Arkhipov A, Schulten K. Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure. 2009; 17: 882–92.
  • Hanson PI, Shim S, Merrill SA. Cell biology of the ESCRT machinery. Curr Opin Cell Biol. 2009; 21: 568–74.
  • Metcalf D, Isaacs AM. The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem Soc Trans. 2010; 38: 1469–73.
  • Fyfe I, Schuh AL, Edwardson JM, Audhya A. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J Biol Chem. 2011; 286: 34262–70.
  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III complex. Nature. 2009; 458: 172–7.
  • Hanson PI, Cashikar A. Multivesicular body morphogenesis. Ann Rev Cell Dev Biol. 2012; 28: 337–62.
  • Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts Aet al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14: 677–85.
  • Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale Net al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014; 5: 3477.
  • Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid Fet al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem. 2006; 281: 19665–75.
  • Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007; 5: e158.
  • Shen B, Wu N, Yang JM, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. 2011; 286: 14383–95.
  • Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012; 40: D1241–4.
  • Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak Jet al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000; 6: 769–75.
  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha Aet al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008; 10: 619–24.
  • Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno Get al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012; 18: 883–91.
  • Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GDet al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004; 104: 3257–66.
  • Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LFet al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010; 11: 675–87.
  • Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti Met al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011; 124: 447–58.
  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito Aet al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009; 284: 34211–22.
  • Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009; 9: 581–93.
  • Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar Det al. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 2004; 572: 11–14.
  • Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JFet al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004; 380: 161–71.
  • Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007; 89: 205–12.
  • van der Goot FG, Gruenberg J. Intra-endosomal membrane traffic. Trends Cell Biology. 2006; 16: 514–21.
  • Tanaka M, Itai T, Adachi M, Nagata S. Downregulation of Fas ligand by shedding. Nat Med. 1998; 4: 31–6.
  • Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana Aet al. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med. 1998; 187: 1205–13.
  • Shimoda M, Khokha R. Proteolytic factors in exosomes. Proteomics. 2013; 13: 1624–36.
  • Rand ML, Wang H, Bang KW, Packham MA, Freedman J. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost. 2006; 4: 1621–3.
  • Willekens FL, Werre JM, Kruijt JK, Roerdinkholder-Stoelwinder B, Groenen-Dopp YA, van den Bos AGet al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005; 105: 2141–5.
  • Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai Tet al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013; 165: 77–84.
  • Rank A, Nieuwland R, Crispin A, Grutzner S, Iberer M, Toth Bet al. Clearance of platelet microparticles in vivo. Platelets. 2011; 22: 111–16.
  • Clayton A, Harris CL, Court J, Mason MD, Morgan BP. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur J Immunol. 2003; 33: 522–31.
  • Hao S, Bai O, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology. 2007; 120: 90–102.
  • Dasgupta SK, Abdel-Monem H, Niravath P, Le A, Bellera RV, Langlois Ket al. Lactadherin and clearance of platelet-derived microvesicles. Blood. 2009; 113: 1332–9.
  • Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009; 182: 581–7.
  • Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation. 2012; 125: 1664–72.
  • Nolte-‘t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009; 113: 1977–81.
  • Segura E, Guerin C, Hogg N, Amigorena S, Thery C. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol. 2007; 179: 1489–96.
  • Simons M, Raposo G. Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21: 575–81.
  • Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal Met al. Cells release prions in association with exosomes. Proc Natl Acad Sci USA. 2004; 101: 9683–8.
  • Katzmann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002; 3: 893–905.
  • Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006; 107: 102–8.
  • Raiborg C, Rusten TE, Stenmark H. Protein sorting into multivesicular endosomes. Curr Opin Cell Biol. 2003; 15: 446–55.
  • Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic. 2002; 3: 321–30.
  • Calzolari A, Raggi C, Deaglio S, Sposi NM, Stafsnes M, Fecchi Ket al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci. 2006; 119: 4486–98.
  • Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004; 18: 977–9.
  • Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol. 2008; 180: 7249–58.
  • Viaud S, Terme M, Flament C, Taieb J, Andre F, Novault Set al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One. 2009; 4: e4942.
  • Macario AJ, Cappello F, Zummo G, Conway de Macario E. Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann N Y Acad Sci. 2010; 1197: 85–93.
  • Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LAet al. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones. 2003; 8: 348–60.
  • Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DFet al. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One. 2012; 7: e42008.
  • Merendino AM, Bucchieri F, Campanella C, Marciano V, Ribbene A, David Set al. Hsp60 is actively secreted by human tumor cells. PLoS One. 2010; 5: e9247.
  • Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse Met al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010; 51: 2105–20.
  • Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro Fet al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012; 189: 2833–42.
  • Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Qet al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 2012; 188: 5954–61.
  • Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho Pet al. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 2002; 195: 1303–16.
  • Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina Pet al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology. 2005; 128: 1796–804.
  • MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001; 15: 825–35.
  • Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 2007; 179: 1913–25.
  • Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandona D, Savaglio Eet al. Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood. 2007; 109: 3856–64.
  • Berda-Haddad Y, Robert S, Salers P, Zekraoui L, Farnarier C, Dinarello CAet al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1 alpha. Proc Natl Acad Sci USA. 2011; 108: 20684–9.
  • Gulinelli S, Salaro E, Vuerich M, Bozzato D, Pizzirani C, Bolognesi Get al. IL-18 associates to microvesicles shed from human macrophages by a LPS/TLR-4 independent mechanism in response to P2X receptor stimulation. Eur J Immunol. 2012; 42: 3334–45.
  • Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis. 2005; 35: 1–10.
  • Hasegawa H, Thomas HJ, Schooley K, Born TL. Native IL-32 is released from intestinal epithelial cells via a non-classical secretory pathway as a membrane-associated protein. Cytokine. 2011; 53: 74–83.
  • Zhang HG, Liu C, Su K, Yu S, Zhang L, Zhang Set al. A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death. J Immunol. 2006; 176: 7385–93.
  • Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher Wet al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol. 2003; 171: 4830–6.
  • Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004; 124: 376–84.
  • Taraboletti G, D'Ascenzo S, Giusti I, Marchetti D, Borsotti P, Millimaggi Det al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia. 2006; 8: 96–103.
  • Baj-Krzyworzeka M, Weglarczyk K, Mytar B, Szatanek R, Baran J, Zembala M. Tumour-derived microvesicles contain interleukin-8 and modulate production of chemokines by human monocytes. Anticancer Res. 2011; 31: 1329–35.
  • Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IEet al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood. 2008; 112: 5026–36.
  • Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol. 2011; 186: 2219–28.
  • Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang Xet al. Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008; 181: 5242–8.
  • Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010; 5: e11469.
  • Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007; 67: 7458–66.
  • Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang Jet al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009; 124: 2621–33.
  • Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010; 70: 9621–30.
  • Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman Ret al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015; 34: 290–302.
  • Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010; 38: 215–24.
  • Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’-untranslated regions. Biol Direct. 2013; 8: 12.
  • Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Branski Pet al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006; 55: 808–18.
  • Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du Met al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013; 14: 319.
  • Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer. 2013; 4: 261–72.
  • Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth Det al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 2010; 5: e13515.
  • Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MAet al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011; 2: 282.
  • Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012; 40: 10937–49.
  • Nolte-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Research. 2012; 40: 9272–85.
  • Miranda KC, Bond DT, Levin JZ, Adiconis X, Sivachenko A, Russ Cet al. Massively parallel sequencing of human urinary exosome/microvesicle RNA reveals a predominance of non-coding RNA. PLoS One. 2014; 9: e96094.
  • Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. Peer J. 2013; 1: e201.
  • Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014; 3 23743, doi: http://dx.doi.org/10.3402/jev.v3.23743.
  • Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen Xet al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One. 2012; 7: e46957.
  • Shelke GV, Lässer C, Gho YS, Lötvall J. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014; 3 24783, doi: http://dx.doi.org/10.3402/jev.v3.24783.
  • Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson Bet al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014; 74: 5758–71.
  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DFet al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108: 5003–8.
  • Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39: 7223–33.
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011; 13: 423–33.
  • Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal Aet al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014; 26: 707–21.
  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009; 11: 1143–9.
  • Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006; 20: 1487–95.
  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Zet al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010; 39: 133–44.
  • Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014; 28: 3–13.
  • Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics. 2011; 12(Suppl 3): S18.
  • Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces Net al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013; 4: 2980.
  • Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle Ret al. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep. 2014; 8: 1432–46.
  • Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Strobel T, Erkan EPet al. miR-1289 and “Zipcode”-like Sequence Enrich mRNAs in Microvesicles. Mol Ther Nucleic Acids. 2012; 1: e10.
  • Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MA, Sadek P, Sie Det al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014; 8: 1649–58.
  • Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone Let al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007; 110: 2440–8.
  • Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone Let al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One. 2012; 7: e33115.
  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino Fet al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009; 20: 1053–67.
  • Eldh M, Ekstrom K, Valadi H, Sjostrand M, Olsson B, Jernas Met al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One. 2010; 5: e15353.
  • Gennebäck N, Hellman U, Malm L, Larsson G, Ronquist G, Waldenström Aet al. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracell Vesicles. 2013; 2 20167, doi: http://dx.doi.org/10.3402/jev.v2i0.20167.
  • Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringner Met al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013; 110: 7312–17.
  • Muller G, Schneider M, Biemer-Daub G, Wied S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 2011; 23: 1207–23.
  • de Candia P, Torri A, Gorletta T, Fedeli M, Bulgheroni E, Cheroni Cet al. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation. PLoS One. 2013; 8: e75348.
  • Russo F, Di Bella S, Nigita G, Macca V, Lagana A, Giugno Ret al. miRandola: extracellular circulating microRNAs database. PLoS One. 2012; 7: e47786.
  • Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono Let al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010; 5: e11803.
  • Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu Let al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008; 3: e3694.
  • Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura Ket al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun. 2010; 398: 723–9.
  • Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012; 22: 125–32.
  • Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012; 3: 56.
  • Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012; 21: R125–34.
  • Mittelbrunn M, Sanchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012; 13: 328–35.
  • Katsuda T, Ikeda S, Yoshioka Y, Kosaka N, Kawamata M, Ochiya T. Physiological and pathological relevance of secretory microRNAs and a perspective on their clinical application. Biol Chem. 2014; 395: 365–73.
  • Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell. 2015; 107: 61–77.
  • Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova Tet al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014; 41: 89–103.
  • Ekström K, Valadi H, Sjöstrand M, Malmhäll C, Bossios A, Eldh Met al. Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J Extracell Vesicles. 2012; 1 18389, doi: http://dx.doi.org/10.3402/jev.v1i0.18389.
  • Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte Ket al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013; 121: 984–95.
  • Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010; 1: 7.
  • Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Qet al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012; 8: 118–23.
  • Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes – good things come in nano-packages. Placenta. 2014; 35(Suppl): S69–73.
  • Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MCet al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant. 2012; 21: 1305–20.
  • Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke Bet al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009; 2: ra81.
  • Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AMet al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012; 14: 249–56.
  • Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky Set al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013; 288: 7105–16.
  • Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon Aet al. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle. 2014; 13: 78–89.
  • Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa Met al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014; 102: 1751–61, e1.
  • Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BSet al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014; 9: e114627.
  • Salvucci O, Jiang K, Gasperini P, Maric D, Zhu J, Sakakibara Set al. MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica. 2012; 97: 818–26.
  • Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NBet al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009; 4: e4722.
  • Nair R, Santos L, Awasthi S, von Erlach T, Chow LW, Bertazzo Set al. Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation. Stem Cells Dev. 2014; 23: 1625–35.
  • Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012; 37: 460–5.
  • Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg Iet al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood. 1999; 93: 3956–63.
  • Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XOet al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011; 2: 180.
  • Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010; 117: 1–4.
  • Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva Bet al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014; 24: 766–9.
  • Waldenstrom A, Genneback N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One. 2012; 7: e34653.
  • Lee TH, Chennakrishnaiah S, Audemard E, Montermini L, Meehan B, Rak J. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun. 2014; 451: 295–301.
  • Lazaro-Ibanez E, Sanz-Garcia A, Visakorpi T, Escobedo-Lucea C, Siljander P, Ayuso-Sacido Aet al. Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate. 2014; 74: 1379–90.
  • Arienti G, Carlini E, Polci A, Cosmi EV, Palmerini CA. Fatty acid pattern of human prostasome lipid. Arch Biochem Biophys. 1998; 358: 391–5.
  • Arvidson G, Ronquist G, Wikander G, Ojteg AC. Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering. Biochim Biophys Acta. 1989; 984: 167–73.
  • Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013; 13: 1554–71.
  • Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012; 7: 1525–41.
  • Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta. 2014; 1841: 108–20.
  • Baig S, Lim JY, Fernandis AZ, Wenk MR, Kale A, Su LLet al. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta. 2013; 34: 436–42.
  • Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 2014; 1838: 2954–65.
  • Biro E, Akkerman JW, Hoek FJ, Gorter G, Pronk LM, Sturk Aet al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost. 2005; 3: 2754–63.
  • Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005; 106: 1604–11.
  • Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol. 2011; 3: a004697.
  • Llorente A, van Deurs B, Sandvig K. Cholesterol regulates prostasome release from secretory lysosomes in PC-3 human prostate cancer cells. Eur J Cell Biol. 2007; 86: 405–15.
  • Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol. 2005; 27: 375–87.
  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland Fet al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319: 1244–7.
  • Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure Jet al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science. 2004; 303: 531–4.
  • Beloribi S, Ristorcelli E, Breuzard G, Silvy F, Bertrand-Michel J, Beraud Eet al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One. 2012; 7: e47480.
  • Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002; 62: 6312–17.
  • Palmerini CA, Cametti C, Sennato S, Gaudino D, Carlini E, Bordi Fet al. Role of cholesterol, DOTAP, and DPPC in prostasome/spermatozoa interaction and fusion. J Membr Biol. 2006; 211: 185–90.
  • Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013; 146: R21–35.
  • Sato S, Zhu XL, Sly WS. Carbonic anhydrase isozymes IV and II in urinary membranes from carbonic anhydrase II-deficient patients. Proc Natl Acad Sci USA. 1990; 87: 6073–6.
  • Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi Set al. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995; 332: 1540–5.
  • Dear JW, Street JM, Bailey MA. Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics. 2013; 13: 1572–80.
  • Hara M, Yanagihara T, Hirayama Y, Ogasawara S, Kurosawa H, Sekine Set al. Podocyte membrane vesicles in urine originate from tip vesiculation of podocyte microvilli. Hum Pathol. 2010; 41: 1265–75.
  • Prunotto M, Farina A, Lane L, Pernin A, Schifferli J, Hochstrasser DFet al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J Proteomics. 2013; 82: 193–229.
  • Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert Set al. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007; 72: 1095–102.
  • Dimov I, Jankovic Velickovic L, Stefanovic V. Urinary exosomes. ScientificWorldJournal. 2009; 9: 1107–18.
  • Gonzales P, Pisitkun T, Knepper MA. Urinary exosomes: is there a future?. Nephrol Dial Transplant. 2008; 23: 1799–801.
  • Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. Mass Spectrom Rev. 2011; 30: 1185–202.
  • Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XOet al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009; 100: 1603–7.
  • Fang DY, King HW, Li JY, Gleadle JM. Exosomes and the kidney: blaming the messenger. Nephrology (Carlton). 2013; 18: 1–10.
  • van Balkom BW, Pisitkun T, Verhaar MC, Knepper MA. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int. 2011; 80: 1138–45.
  • Knepper MA, Pisitkun T. Exosomes in urine: who would have thought …?. Kidney Int. 2007; 72: 1043–5.
  • Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008; 8: 4083–99.
  • Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs Pet al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA. 2006; 103: 18344–9.
  • McKee JA, Kumar S, Ecelbarger CA, Fernandez-Llama P, Terris J, Knepper MA. Detection of Na(+) transporter proteins in urine. J Am Soc Nephrol. 2000; 11: 2128–32.
  • Esteva-Font C, Wang X, Ars E, Guillen-Gomez E, Sans L, Gonzalez Saavedra Iet al. Are sodium transporters in urinary exosomes reliable markers of tubular sodium reabsorption in hypertensive patients?. Nephron Physiol. 2010; 114: 25–34.
  • Olivieri O, Chiecchi L, Pizzolo F, Castagna A, Raffaelli R, Gunasekaran Met al. Urinary prostasin in normotensive individuals: correlation with the aldosterone to renin ratio and urinary sodium. Hypertens Res. 2013; 36: 528–33.
  • Hiemstra TF, Charles PD, Gracia T, Hester SS, Gatto L, Al-Lamki Ret al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol. 2014; 25: 2017–27.
  • Kleinjan A, Boing AN, Sturk A, Nieuwland R. Microparticles in vascular disorders: how tissue factor-exposing vesicles contribute to pathology and physiology. Thromb Res. 2012; 130(Suppl 1): S71–3.
  • Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami Het al. Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull. 2011; 34: 13–23.
  • Xiao H, Wong DT. Proteomic analysis of microvesicles in human saliva by gel electrophoresis with liquid chromatography-mass spectrometry. Anal Chim Acta. 2012; 723: 61–7.
  • Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010; 5: e8577.
  • Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull. 2013; 36: 66–75.
  • Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012; 7: e30679.
  • Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios Aet al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011; 9: 9.
  • Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011; 117: 3172–80.
  • Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN. Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthritis Rheum. 2005; 52: 1517–21.
  • Gyorgy B, Szabo TG, Turiak L, Wright M, Herczeg P, Ledeczi Zet al. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One. 2012; 7: e49726.
  • Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum. 2006; 54: 3809–14.
  • Mor-Vaknin N, Kappes F, Dick AE, Legendre M, Damoc C, Teitz-Tennenbaum Set al. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. Arthritis Rheum. 2011; 63: 556–67.
  • Witek RP, Yang L, Liu R, Jung Y, Omenetti A, Syn WKet al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 2009; 136: 320–30 e2.
  • Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TVet al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol. 2010; 299: G990–9.
  • Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TVet al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol. 2013; 304: G1013–24.
  • Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG. The choroid plexus in the rise, fall and repair of the brain. Bioessays. 2005; 27: 262–74.
  • Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil Det al. Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci. 2005; 118: 2849–58.
  • Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TSet al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012; 10: 5.
  • Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res. 2007; 6: 3537–48.
  • An K, Klyubin I, Kim Y, Jung JH, Mably AJ, O'Dowd STet al. Exosomes neutralize synaptic-plasticity-disrupting activity of Abeta assemblies in vivo. Mol Brain. 2013; 6: 47.
  • Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund Aet al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003; 22: 578–83.
  • Levanen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, Pollack JLet al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013; 131: 894–903.
  • Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic Aet al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 2012; 67: 911–19.
  • Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius Aet al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol. 2010; 126: 1032–40, 40 e1-4.
  • Zhu M, Li Y, Shi J, Feng W, Nie G, Zhao Y. Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small. 2012; 8: 404–12.
  • Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 2007; 110: 3234–44.
  • Almqvist N, Lonnqvist A, Hultkrantz S, Rask C, Telemo E. Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology. 2008; 125: 21–7.
  • Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013; 131 1194–203, 203 e1–14.
  • Shin TS, Kim JH, Kim YS, Jeon SG, Zhu Z, Gho YSet al. Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways. Allergy. 2010; 65: 1256–65.
  • Villalba M, Rodriguez R, Batanero E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods. 2014; 66: 44–54.
  • Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol. 2000; 165: 1259–65.
  • Prado N, Canamero M, Villalba M, Rodriguez R, Batanero E. Bystander suppression to unrelated allergen sensitization through intranasal administration of tolerogenic exosomes in mouse. Mol Immunol. 2010; 47: 2148–51.
  • Camacho AI, de Souza J, Sanchez-Gomez S, Pardo-Ros M, Irache JM, Gamazo C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine. 2011; 29: 8222–9.
  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RCet al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011; 19: 1769–79.
  • Al-Dossary AA, Strehler EE, Martin-Deleon PA. Expression and secretion of plasma membrane Ca(2+)-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013; 8: e80181.
  • Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA. Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev. 2008; 75: 1627–36.
  • Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CLet al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013; 8: e58502.
  • Kumamoto K, Yang XZ, Hasegawa A, Komori S, Koyama K. CD52 expression is induced in the mouse uterus at the time of embryo implantation. J Reprod Immunol. 2009; 82: 32–9.
  • Kabir-Salmani M, Nikzad H, Shiokawa S, Akimoto Y, Iwashita M. Secretory role for human uterodomes (pinopods): secretion of LIF. Mol Hum Reprod. 2005; 11: 553–9.
  • Aghajanova L, Altmae S, Bjuresten K, Hovatta O, Landgren BM, Stavreus-Evers A. Disturbances in the LIF pathway in the endometrium among women with unexplained infertility. Fertil Steril. 2009; 91: 2602–10.
  • Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski Det al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008; 79: 12–17.
  • Jean-Pierre C, Perni SC, Bongiovanni AM, Kalish RB, Karasahan E, Ravich Met al. Extracellular 70-kd heat shock protein in mid-trimester amniotic fluid and its effect on cytokine production by ex vivo-cultured amniotic fluid cells. Am J Obstet Gynecol. 2006; 194: 694–8.
  • Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp Cet al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via TLR signaling. J Biol Chem. 2013; 288: 36691–702.
  • Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman Met al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007; 179: 1969–78.
  • Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol. 2006; 176: 1534–42.
  • Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Proteomics. 2012; 75: 1486–92.
  • Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Purification of RNA from milk whey. Methods Mol Biol. 2013; 1024: 191–201.
  • Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell. 2013; 4: 197–210.
  • Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang Xet al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One. 2012; 7: e43691.
  • Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013; 12: 103.
  • George JN, Thoi LL, McManus LM, Reimann TA. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982; 60: 834–40.
  • Gemmell CH, Sefton MV, Yeo EL. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann's thrombasthenia defect. J Biol Chem. 1993; 268: 14586–9.
  • Hill AF, Pegtel DM, Lambertz U, Leonardi T, O'Driscoll L, Pluchino Set al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles. 2013; 2 doi: http://dx.doi.org/10.3402/jev.v2i0.22859.
  • Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet Set al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12: 614–27.
  • Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg Let al. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses – novel mechanisms for host–microbe interactions in atopic eczema. PLoS One. 2011; 6: e21480.
  • Ren Y, Yang J, Xie R, Gao L, Yang Y, Fan Het al. Exosomal-like vesicles with immune-modulatory features are present in human plasma and can induce CD4+ T-cell apoptosis in vitro. Transfusion. 2011; 51: 1002–11.
  • Flaumenhaft R, Dilks JR, Richardson J, Alden E, Patel-Hett SR, Battinelli Eet al. Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles. Blood. 2009; 113: 1112–21.
  • Aatonen M, Gronholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost. 2012; 38: 102–13.
  • Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger Jet al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014; 124: 2173–83.
  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves Met al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470–6.
  • Sabapatha A, Gercel-Taylor C, Taylor DD. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol. 2006; 56: 345–55.
  • Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto Set al. Exosome can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol. 2011; 2: 215–22.
  • Park K-S, Kim J-W, Lee J, Kim OY, Jang SC, Kim SRet al. Induction of peritoneal and sepsis-like systemic inflammation by bacteria-free extracellular vesicles from faeces. J Extracell Vesicles. 2014; 3 doi: http://dx.doi.org/10.3402/jev.v3.24214 [PubMed Abstract].
  • Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DKet al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One. 2013; 8: e76520.
  • Sahlen G, Nilsson O, Larsson A, Carlsson L, Norlen BJ, Ronquist G. Secretions from seminal vesicles lack characteristic markers for prostasomes. Ups J Med Sci. 2010; 115: 107–12.
  • Saez F, Frenette G, Sullivan R. Epididymosomes and prostasomes: their roles in posttesticular maturation of the sperm cells. J Androl. 2003; 24: 149–54.
  • Frenette G, Girouard J, Sullivan R. Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biol Reprod. 2006; 75: 885–90.
  • Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DRet al. Proteomic analysis of human prostasomes. Prostate. 2003; 56: 150–61.
  • Brouwers JF, Aalberts M, Jansen JW, van Niel G, Wauben MH, Stout TAet al. Distinct lipid compositions of two types of human prostasomes. Proteomics. 2013; 13: 1660–6.
  • Aalberts M, Sostaric E, Wubbolts R, Wauben MW, Nolte-‘t Hoen EN, Gadella BMet al. Spermatozoa recruit prostasomes in response to capacitation induction. Biochim Biophys Acta. 2013; 1834: 2326–35.
  • Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH, Stout TAet al. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod. 2012; 86: 82.
  • Owens AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011; 108: 1284–97.
  • Castaman G, Yu-Feng L, Rodeghiero F. A bleeding disorder characterised by isolated deficiency of platelet microvesicle generation. Lancet. 1996; 347: 700–1.
  • Stormorken H, Sjaastad O, Langslet A, Sulg I, Egge K, Diderichsen J. A new syndrome: thrombocytopathia, muscle fatigue, asplenia, miosis, migraine, dyslexia and ichthyosis. Clin Genet. 1985; 28: 367–74.
  • Weiss HJ, Vicic WJ, Lages BA, Rogers J. Isolated deficiency of platelet procoagulant activity. Am J Med. 1979; 67: 206–13.
  • Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood. 1996; 87: 1409–15.
  • Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H, Menon AKet al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat Commun. 2013; 4: 2367.
  • Chen YW, Chen YC, Wang JS. Absolute hypoxic exercise training enhances in vitro thrombin generation by increasing procoagulant platelet-derived microparticles under high shear stress in sedentary men. Clin Sci (Lond). 2013; 124: 639–49.
  • Suades R, Padro T, Vilahur G, Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb Haemost. 2012; 108: 1208–19.
  • Davila M, Robles-Carrillo L, Unruh D, Huo Q, Gardiner C, Sargent ILet al. Microparticle association and heterogeneity of tumor-derived tissue factor in plasma: is it important for coagulation activation?. J Thromb Haemost. 2014; 12: 186–96.
  • van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012; 64: 676–705.
  • Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost. 2011; 9: 2251–61.
  • Jy W, Johansen ME, Bidot C Jr., Horstman LL, Ahn YS. Red cell-derived microparticles (RMP) as haemostatic agent. Thromb Haemost. 2013; 110: 751–60.
  • Schecter AD, Spirn B, Rossikhina M, Giesen PL, Bogdanov V, Fallon JTet al. Release of active tissue factor by human arterial smooth muscle cells. Circ Res. 2000; 87: 126–32.
  • Egorina EM, Sovershaev MA, Osterud B. Regulation of tissue factor procoagulant activity by post-translational modifications. Thromb Res. 2008; 122: 831–7.
  • Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb haemost. 2008; 100: 878–85.
  • Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries Eet al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003; 197: 1585–98.
  • Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwege Vet al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994; 153: 3245–55.
  • Nieuwland R, Berckmans RJ, McGregor S, Boing AN, Romijn FP, Westendorp RGet al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 2000; 95: 930–5.
  • Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem. 1999; 274: 23111–18.
  • Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest. 2012; 122: 2331–6.
  • Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood. 2013; 122: 1873–80.
  • Matsumoto N, Nomura S, Kamihata H, Kimura Y, Iwasaka T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost. 2004; 91: 146–54.
  • Markiewicz M, Richard E, Marks N, Ludwicka-Bradley A. Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases. J Aging Res. 2013; 2013: 734509.
  • VanWijk MJ, Boer K, Berckmans RJ, Meijers JC, van der Post JA, Sturk Aet al. Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents. Thromb Haemost. 2002; 88: 415–20.
  • Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CW, Sargent IL. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS One. 2011; 6: e26313.
  • Osterud B. Tissue factor/TFPI and blood cells. Thromb Res. 2012; 129: 274–8.
  • Aharon A, Katzenell S, Tamari T, Brenner B. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications. J Thromb Haemost. 2009; 7: 1047–50.
  • Steppich B, Mattisek C, Sobczyk D, Kastrati A, Schomig A, Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost. 2005; 93: 35–9.
  • Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001; 85: 639–46.
  • Lacroix R, Plawinski L, Robert S, Doeuvre L, Sabatier F, Martinez de Lizarrondo Set al. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica. 2012; 97: 1864–72.
  • Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011; 105: 396–408.
  • Hargett LA, Bauer NN. On the origin of microparticles: from “platelet dust” to mediators of intercellular communication. Pulm Circ. 2013; 3: 329–40.
  • Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983; 97: 329–39.
  • Vidal M. Exosomes in erythropoiesis. Transfus Clin Biol. 2010; 17: 131–7.
  • Blanc L, Vidal M. Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol. 2010; 17: 177–83.
  • Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JCet al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 2008; 15: 1723–33.
  • Blanc L, Vidal M. [Secreted exosomes from reticulocytes express an eat-me signal]. Med Sci (Paris). 2008; 24: 462–3.
  • Rieu S, Geminard C, Rabesandratana H, Sainte-Marie J, Vidal M. Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur J Biochem. 2000; 267: 583–90.
  • Blanc L, Liu J, Vidal M, Chasis JA, An X, Mohandas N. The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume. Blood. 2009; 114: 3928–34.
  • Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques Vet al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem. 2011; 286: 34426–39.
  • Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One. 2011; 6: e26588.
  • Rhee JS, Black M, Schubert U, Fischer S, Morgenstern E, Hammes HPet al. The functional role of blood platelet components in angiogenesis. Thromb Haemost. 2004; 92: 394–402.
  • Rohde E, Bartmann C, Schallmoser K, Reinisch A, Lanzer G, Linkesch Wet al. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells. 2007; 25: 1746–52.
  • de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma Get al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012; 1 doi: http://dx.doi.org/10.3402/jev.v1i0.18396.
  • Baer C, Squadrito ML, Iruela-Arispe ML, De Palma M. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp Cell Res. 2013; 319: 1626–34.
  • Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NWet al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006; 444: 1032–7.
  • Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CEet al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 2010; 116: 2385–94.
  • Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell Met al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013; 8: e68451.
  • Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014; 124: 3748–57.
  • Martinez MC, Andriantsitohaina R. Microparticles in angiogenesis: therapeutic potential. Circ Res. 2011; 109: 110–19.
  • Finn NA, Searles CD. Intracellular and extracellular miRNAs in regulation of angiogenesis signaling. Curr Angiogenes. 2012; 4: 299–307.
  • Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013; 32: 763–7.
  • Jansen F, Yang X, Hoyer FF, Paul K, Heiermann N, Becher MUet al. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis. Arterioscler Thromb Vasc Biol. 2012; 32: 1925–35.
  • Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting Set al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013; 128: 2026–38.
  • van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PMet al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013; 121: 3997–4006, S1–15.
  • Wang JG, Williams JC, Davis BK, Jacobson K, Doerschuk CM, Ting JPYet al. Monocytic microparticles activate endothelial cells in an IL-1 beta-dependent manner. Blood. 2011; 118: 2366–74.
  • Oehmcke S, Morgelin M, Malmstrom J, Linder A, Chew M, Thorlacius Het al. Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol. 2012; 14: 107–19.
  • Mastronardi ML, Mostefai HA, Meziani F, Martinez MC, Asfar P, Andriantsitohaina R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med. 2011; 39: 1739–48.
  • Prakash PS, Caldwell CC, Lentsch AB, Pritts TA, Robinson BRH. Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg. 2012; 73: 401–6.
  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt MEet al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327: 580–3.
  • Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey Let al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013; 5: 235–49.
  • Hoyer FF, Giesen MK, Franca CN, Lutjohann D, Nickenig G, Werner N. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med. 2012; 16: 2777–88.
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444: 860–7.
  • Holder BS, Tower CL, Jones CJP, Aplin JD, Abrahams VM. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod. 2012; 86:103, 1–7
  • Stahl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood. 2011; 117: 5503–13.
  • Nielsen CT, Ostergaard O, Stener L, Iversen LV, Truedsson L, Gullstrand Bet al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 2012; 64: 1227–36.
  • Biro E, Nieuwland R, Tak PP, Pronk LM, Schaap MCL, Sturk Aet al. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis. 2007; 66: 1085–92.
  • van Eijk IC, Tushuizen ME, Sturk A, Dijkmans BA, Boers M, Voskuyl AEet al. Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis. Ann Rheum Dis. 2010; 69: 1378–82.
  • Renner B, Klawitter J, Goldberg R, McCullough JW, Ferreira VP, Cooper JEet al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J Am Soc Nephrol. 2013; 24: 1849–62.
  • Yin W, Ghebrehiwet B, Peerschke EIB. Expression of complement components and inhibitors on platelet microparticles. Platelets. 2008; 19: 225–33.
  • Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004; 104: 2543–8.
  • Schiller M, Heyder P, Ziegler S, Niessen A, Classen L, Lauffer Aet al. During apoptosis HMGB1 is translocated into apoptotic cell-derived membraneous vesicles. Autoimmunity. 2013; 46: 342–6.
  • Thomas LM, Salter RD. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially dependent on TLR4. J Immunol. 2010; 185: 3740–9.
  • Fabbri M, Paone A, Calore F, Galli R, Croce CM. A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol. 2013; 10: 169–74.
  • Schiller M, Parcina M, Heyder P, Foermer S, Ostrop J, Leo Aet al. Induction of type I IFN is a physiological immune reaction to apoptotic cell-derived membrane microparticles. J Immunol. 2012; 189: 1747–56.
  • Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived exosomal fibronectin induces pro-inflammatory Il-1 beta production by macrophages. Am J Reprod Immunol. 2011; 66: 259–69.
  • Bhatnagar S, Schorey JS. Exosomes released from infected macrophages contain mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem. 2007; 282: 25779–89.
  • O'Neill HC, Quah BJC. Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal. 2008; 1: pe8.
  • Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli Met al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol. 2005; 174: 7268–77.
  • Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP. Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. Am J Pathol. 2009; 175: 696–705.
  • Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol. 2012; 188: 1942–52.
  • Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PLoS One. 2009; 4: e7140.
  • Qu Y, Ramachandra L, Mohr S, Franchi L, Harding CV, Nunez Get al. P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J Immunol. 2009; 182: 5052–62.
  • Teo BHD, Wong SH. MHC class II-associated invariant chain (Ii) modulates dendritic cells-derived microvesicles (DCMV)-mediated activation of microglia. Biochem Biophys Res Commun. 2010; 400: 673–8.
  • Singh PP, Smith VL, Karakousis PC, Schorey JS. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol. 2012; 189: 777–85.
  • Walters SB, Kieckbusch J, Nagalingam G, Swain A, Latham SL, Grau GEet al. Microparticles from mycobacteria-infected macrophages promote inflammation and cellular migration. J Immunol. 2013; 190: 669–77.
  • Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop Dis. 2013; 7: e2185.
  • Timar CI, Lorincz AM, Csepanyi-Komi R, Valyi-Nagy A, Nagy G, Buzas EIet al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013; 121: 510–18.
  • Dalli J, Serhan CN. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood. 2012; 120: e60–72.
  • Eken C, Gasser O, Zenhaeusern G, Oehri I, Hess C, Schifferli JA. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol. 2008; 180: 817–24.
  • Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood. 2008; 112: 2512–19.
  • Lim K, Sumagin R, Hyun YM. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue. Immune Netw. 2013; 13: 102–6.
  • Watanabe J, Marathe GK, Neilsen PO, Weyrich AS, Harrison KA, Murphy RCet al. Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. J Biol Chem. 2003; 278: 33161–8.
  • Pluskota E, Woody NM, Szpak D, Ballantyne CM, Soloviev DA, Simon DIet al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008; 112: 2327–35.
  • Timar CI, Lorincz AM, Ligeti E. Changing world of neutrophils. Pflugers Arch. 2013; 465: 1521–33.
  • Caligiuri MA. Human natural killer cells. Blood. 2008; 112: 461–9.
  • Fernandez-Messina L, Reyburn HT, Vales-Gomez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front Immunol. 2012; 3: 299.
  • Kim HP, Morse D, Choi AM. Heat-shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 2006; 10: 759–69.
  • Elsner L, Flugge PF, Lozano J, Muppala V, Eiz-Vesper B, Demiroglu SYet al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med. 2010; 14: 992–1002.
  • Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller Het al. The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol. 2007; 179: 5523–33.
  • Binici J, Koch J. BAG-6, a jack of all trades in health and disease. Cell Mol Life Sci. 2014; 71: 1829–37.
  • Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay Eet al. The Critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol. 2013; 4: 490.
  • Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013; 41: 245–51.
  • Ashiru O, Boutet P, Fernandez-Messina L, Aguera-Gonzalez S, Skepper JN, Vales-Gomez Met al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010; 70: 481–9.
  • Fais S. NK cell-released exosomes: natural nanobullets against tumors. Oncoimmunology. 2013; 2: e22337.
  • Norling LV, Spite M, Yang R, Flower RJ, Perretti M, Serhan CN. Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J Immunol. 2011; 186: 5543–7.
  • Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction?. Immunity. 2012; 37: 13–24.
  • Shefler I, Salamon P, Hershko AY, Mekori YA. Mast cells as sources and targets of membrane vesicles. Curr Pharm Des. 2011; 17: 3797–804.
  • Carroll-Portillo A, Surviladze Z, Cambi A, Lidke DS, Wilson BS. Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol. 2012; 3: 46.
  • Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier Get al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 2003; 170: 3037–45.
  • Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, Erikson Eet al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012; 10: e1001448.
  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JMet al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012; 119: 756–66.
  • Zech D, Rana S, Buchler MW, Zoller M. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Commun Signal. 2012; 10: 37.
  • Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJet al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol. 2008; 180: 3081–90.
  • Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave Cet al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 2007; 132: 1866–76.
  • Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun. 2004; 72: 4127–37.
  • Walker JD, Maier CL, Pober JS. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol. 2009; 182: 1548–59.
  • Dai S, Wan T, Wang B, Zhou X, Xiu F, Chen Tet al. More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res. 2005; 11: 7554–63.
  • Marton A, Vizler C, Kusz E, Temesfoi V, Szathmary Z, Nagy Ket al. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immunol Lett. 2012; 148: 34–8.
  • Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli Pet al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999; 147: 599–610.
  • Giri PK, Schorey JS. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One. 2008; 3: e2461.
  • Obregon C, Rothen-Rutishauser B, Gitahi SK, Gehr P, Nicod LP. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol. 2006; 169: 2127–36.
  • Rialland P, Lankar D, Raposo G, Bonnerot C, Hubert P. BCR-bound antigen is targeted to exosomes in human follicular lymphoma B-cells. Biol Cell. 2006; 98: 491–501.
  • Colino J, Snapper CM. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol. 2006; 177: 3757–62.
  • Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux Fet al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood. 2005; 106: 216–23.
  • Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002; 3: 1156–62.
  • Qazi KR, Gehrmann U, Domange Jordo E, Karlsson MC, Gabrielsson S. Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood. 2009; 113: 2673–83.
  • Schnitzer JK, Berzel S, Fajardo-Moser M, Remer KA, Moll H. Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine. 2010; 28: 5785–93.
  • Ramachandra L, Qu Y, Wang Y, Lewis CJ, Cobb BA, Takatsu Ket al. Mycobacterium tuberculosis synergizes with ATP to induce release of microvesicles and exosomes containing major histocompatibility complex class II molecules capable of antigen presentation. Infect Immun. 2010; 78: 5116–25.
  • Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius Aet al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol. 2007; 120: 1418–24.
  • Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation. 2003; 76: 1503–10.
  • Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol. 2007; 179: 2242–9.
  • Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash Jet al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol. 2005; 174: 6440–8.
  • Nolte-‘t Hoen EN, Wauben MH. Immune cell-derived vesicles: modulators and mediators of inflammation. Curr Pharm Des. 2012; 18: 2357–68.
  • Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo Get al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol. 2002; 168: 3235–41.
  • Alonso R, Mazzeo C, Rodriguez MC, Marsh M, Fraile-Ramos A, Calvo Vet al. Diacylglycerol kinase alpha regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ. 2011; 18: 1161–73.
  • Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS One. 2011; 6: e16899.
  • Busch A, Quast T, Keller S, Kolanus W, Knolle P, Altevogt Pet al. Transfer of T cell surface molecules to dendritic cells upon CD4+ T cell priming involves two distinct mechanisms. J Immunol. 2008; 181: 3965–73.
  • Monleon I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taules M, Iturralde Met al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol. 2001; 167: 6736–44.
  • Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar Ret al. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol. 2010; 185: 5268–78.
  • Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler Ret al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013; 43: 2430–40.
  • Yu X, Huang C, Song B, Xiao Y, Fang M, Feng Jet al. CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013; 285: 62–8.
  • Wahlgren J, Karlson Tde L, Glader P, Telemo E, Valadi H. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012; 7: e49723.
  • Shefler I, Salamon P, Reshef T, Mor A, Mekori YA. T cell-induced mast cell activation: a role for microparticles released from activated T cells. J Immunol. 2010; 185: 4206–12.
  • Shefler I, Pasmanik-Chor M, Kidron D, Mekori YA, Hershko AY. T cell-derived microvesicles induce mast cell production of IL-24: relevance to inflammatory skin diseases. J Allergy Clin Immunol. 2014; 133 217–24 e1-3.
  • Peters PJ, Geuze HJ, Van der Donk HA, Slot JW, Griffith JM, Stam NJet al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989; 19: 1469–75.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JDet al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143–7.
  • Gortner L, Felderhoff-Muser U, Monz D, Bieback K, Kluter H, Jellema Ret al. Regenerative therapies in neonatology: clinical perspectives. Klin Padiatr. 2012; 224: 233–40.
  • Dalal J, Gandy K, Domen J. Role of mesenchymal stem cell therapy in Crohn's disease. Pediatr Res. 2012; 71: 445–51.
  • MacDonald GI, Augello A, De Bari C. Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum. 2011; 63: 2547–57.
  • Kerkela E, Hakkarainen T, Makela T, Raki M, Kambur O, Kilpinen Let al. Transient proteolytic modification of mesenchymal stromal cells increases lung clearance rate and targeting to injured tissue. Stem Cells Transl Med. 2013; 2: 510–20.
  • Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009; 4: 206–16.
  • Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CPet al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med. 2008; 14: 181–7.
  • Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003; 101: 2999–3001.
  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BLet al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG–6. Cell Stem Cell. 2009; 5: 54–63.
  • Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PAet al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007; 1: 129–37.
  • Zanotti L, Sarukhan A, Dander E, Castor M, Cibella J, Soldani Cet al. Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia. 2013; 27: 500–3.
  • Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TSet al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4: 214–22.
  • Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cell secretes immunologically active exosomes. Stem Cells Dev. 2014; 23: 1233–44.
  • Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TRet al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014; 28: 970–3.
  • Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M, Kilpinen Set al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles. 2013; 2 http://dx.doi.org/10.3402/jev.v2i0.21927.
  • Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 2012; 147: 47–54.
  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel Met al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363: 1439–41.
  • Kaipe H, Erkers T, Sadeghi B, Ringden O. Stromal cells-are they really useful for GVHD?. Bone Marrow Transplant. 2014; 49: 737–43.
  • He J, Wang Y, Sun S, Yu M, Wang C, Pei Xet al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton). 2012; 17: 493–500.
  • Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta Cet al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. NephrolDial Transplant. 2011; 26: 1474–83.
  • Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Yet al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013; 4: 34.
  • Togel FE, Westenfelder C. Mesenchymal stem cells: a new therapeutic tool for AKI. Nat Rev Nephrol. 2010; 6: 179–83.
  • Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RBet al. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol. 2006; 177: 3380–7.
  • Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron. 2002; 90: 133–8.
  • Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G. The role of microvesicles in tissue repair. Organogenesis. 2011; 7: 105–15.
  • Oreshkova T, Dimitrov R, Mourdjeva M. A cross-talk of decidual stromal cells, trophoblast, and immune cells: a prerequisite for the success of pregnancy. Am J Reprod Immunol. 2012; 68: 366–73.
  • Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 2013; 19: 548–56.
  • Chua S, Wilkins T, Sargent I, Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br J Obstet Gynaecol. 1991; 98: 973–9.
  • Smarason AK, Sargent IL, Starkey PM, Redman CW. The effect of placental syncytiotrophoblast microvillous membranes from normal and pre-eclamptic women on the growth of endothelial cells in vitro. Br J Obstet Gynaecol. 1993; 100: 943–9.
  • Cockell AP, Learmont JG, Smarason AK, Redman CW, Sargent IL, Poston L. Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial function. Br J Obstet Gynaecol. 1997; 104: 235–40.
  • Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000; 21: 597–602.
  • Frangsmyr L, Baranov V, Nagaeva O, Stendahl U, Kjellberg L, Mincheva-Nilsson L. Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod. 2005; 11: 35–41.
  • Carp H, Dardik R, Lubetsky A, Salomon O, Eskaraev R, Rosenthal Eet al. Prevalence of circulating procoagulant microparticles in women with recurrent miscarriage: a case-controlled study. Hum Reprod. 2004; 19: 191–5.
  • Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent ILet al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006; 27: 56–61.
  • Redman CW, Sargent IL. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol. 2007; 76: 61–7.
  • Pap E, Pallinger E, Falus A, Kiss AA, Kittel A, Kovacs Pet al. T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy. Placenta. 2008; 29: 826–32.
  • Gercel-Taylor C, O'Connor SM, Lam GK, Taylor DD. Shed membrane fragment modulation of CD3-zeta during pregnancy: link with induction of apoptosis. J Reprod Immunol. 2002; 56: 29–44.
  • Pállinger E, Kiss A, Pap E, Tóth S, Falus A. BeWo-derived microvesicles modulate T cell differentiation by the downregulation of IL-6Ralpha expression on CD4+T lymphocytes. Journal of extracellular vesiclses. 2012; 1(Suppl 1): 18180.
  • Askelund KJ, Chamley LW. Trophoblast deportation part I: review of the evidence demonstrating trophoblast shedding and deportation during human pregnancy. Placenta. 2011; 32: 716–23.
  • Pantham P, Askelund KJ, Chamley LW. Trophoblast deportation part II: a review of the maternal consequences of trophoblast deportation. Placenta. 2011; 32: 724–31.
  • Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLoS One. 2013; 8: e56754.
  • Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013; 191: 5515–23.
  • Hedlund M, Stenqvist AC, Nagaeva O, Kjellberg L, Wulff M, Baranov Vet al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009; 183: 340–51.
  • Kshirsagar SK, Alam SM, Jasti S, Hodes H, Nauser T, Gilliam Met al. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012; 33: 982–90.
  • Redman CW, Tannetta DS, Dragovic RA, Gardiner C, Southcombe JH, Collett GPet al. Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta. 2012; 33(Suppl): S48–54.
  • Mincheva-Nilsson L, Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol. 2014; 72: 440–57.
  • Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl. 2011; 34: e475–86.
  • Schwarz A, Wennemuth G, Post H, Brandenburger T, Aumuller G, Wilhelm B. Vesicular transfer of membrane components to bovine epididymal spermatozoa. Cell Tissue Res. 2013; 353: 549–61.
  • Mayorga LS, Tomes CN, Belmonte SA. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life. 2007; 59: 286–92.
  • Bailey JL. Factors regulating sperm capacitation. Syst Biol Reprod Med. 2010; 56: 334–48.
  • Guraya SS. Cellular and molecular biology of capacitation and acrosome reaction in spermatozoa. Int Rev Cytol. 2000; 199: 1–64.
  • Pons-Rejraji H, Artonne C, Sion B, Brugnon F, Canis M, Janny Let al. Prostasomes: inhibitors of capacitation and modulators of cellular signalling in human sperm. Int J Androl. 2011; 34: 568–80.
  • Palmerini CA, Saccardi C, Carlini E, Fabiani R, Arienti G. Fusion of prostasomes to human spermatozoa stimulates the acrosome reaction. Fertil Steril. 2003; 80: 1181–4.
  • Aalberts M, Stout TA, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction. 2013; 147: R1–14.
  • Ronquist G. Prostasomes are mediators of intercellular communication: from basic research to clinical implications. J Intern Med. 2012; 271: 400–13.
  • Matthijs A, Engel B, Woelders H. Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. Reproduction. 2003; 125: 357–67.
  • Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev. 2005; 206: 306–35.
  • Skibinski G, Kelly RW, Harkiss D, James K. Immunosuppression by human seminal plasma – extracellular organelles (prostasomes) modulate activity of phagocytic cells. Am J Reprod Immunol. 1992; 28: 97–103.
  • Kelly RW. Immunosuppressive mechanisms in semen: implications for contraception. Hum Reprod. 1995; 10: 1686–93.
  • Tarazona R, Delgado E, Guarnizo MC, Roncero RG, Morgado S, Sanchez-Correa Bet al. Human prostasomes express CD48 and interfere with NK cell function. Immunobiology. 2011; 216: 41–6.
  • Babiker AA, Ronquist G, Nilsson UR, Nilsson B. Transfer of prostasomal CD59 to CD59-deficient red blood cells results in protection against complement-mediated hemolysis. Am J Reprod Immunol. 2002; 47: 183–92.
  • Kitamura M, Namiki M, Matsumiya K, Tanaka K, Matsumoto M, Hara Tet al. Membrane cofactor protein (CD46) in seminal plasma is a prostasome-bound form with complement regulatory activity and measles virus neutralizing activity. Immunology. 1995; 84: 626–32.
  • Madison MN, Roller RJ, Okeoma CM. Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology. 2014; 11: 102.
  • Osterfield M, Kirschner MW, Flanagan JG. Graded positional information: interpretation for both fate and guidance. Cell. 2003; 113: 425–8.
  • Greco V, Hannus M, Eaton S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell. 2001; 106: 633–45.
  • Erickson JL. Formation and maintenance of morphogen gradients: an essential role for the endomembrane system in Drosophila melanogaster wing development. Fly (Austin). 2011; 5: 266–71.
  • Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature. 2005; 435: 58–65.
  • Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012; 14: 1036–45.
  • Matusek T, Wendler F, Poles S, Pizette S, D'Angelo G, Furthauer Met al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature. 2014; 516: 99–103.
  • Gradilla AC, Gonzalez E, Seijo I, Andres G, Bischoff M, Gonzalez-Mendez Let al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014; 5: 5649.
  • Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008; 18: 199–209.
  • Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J Cell Biol. 2008; 183: 949–61.
  • van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan Net al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001; 121: 337–49.
  • Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002; 115: 2505–15.
  • Savina A, Fader CM, Damiani MT, Colombo MI. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic. 2005; 6: 131–43.
  • Hermle T, Guida MC, Beck S, Helmstadter S, Simons M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J. 2013; 32: 245–59.
  • Quesenberry PJ, Aliotta JM. The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev. 2008; 4: 137–47.
  • Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS, Greer KAet al. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells. 2007; 25: 2245–56.
  • Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella Det al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. 2010; 14: 1605–18.
  • Ali SY, Sajdera SW, Anderson HC. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA. 1970; 67: 1513–20.
  • Robison R. The possible significance of hexosephosphoric esters in ossification. Biochem J. 1923; 17: 286–93.
  • Nahar NN, Missana LR, Garimella R, Tague SE, Anderson HC. Matrix vesicles are carriers of bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and noncollagenous matrix proteins. J Bone Miner Metab. 2008; 26: 514–19.
  • Golub EE. Role of matrix vesicles in biomineralization. Biochim Biophys Acta. 2009; 1790: 1592–8.
  • Thouverey C, Strzelecka-Kiliszek A, Balcerzak M, Buchet R, Pikula S. Matrix vesicles originate from apical membrane microvilli of mineralizing osteoblast-like Saos-2 cells. J Cell Biochem. 2009; 106: 127–38.
  • Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res. 2013; 112: 1073–84.
  • Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. Biochim Biophys Acta. 2012; 1821: 124–36.
  • Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology. 2008; 48: 322–35.
  • Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007; 131: 1728–34.
  • Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle Met al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008; 7: 5157–66.
  • Conde-Vancells J, Gonzalez E, Lu SC, Mato JM, Falcon-Perez JM. Overview of extracellular microvesicles in drug metabolism. Expert Opin Drug Metab Toxicol. 2010; 6: 543–54.
  • Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, Berisa Aet al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS One. 2013; 8: e68693.
  • Huang BQ, Masyuk TV, Muff MA, Tietz PS, Masyuk AI, Larusso NF. Isolation and characterization of cholangiocyte primary cilia. Am J Physiol Gastrointest Liver Physiol. 2006; 291: G500–9.
  • Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope Aet al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008; 118: 3714–24.
  • Chivet M, Javalet C, Hemming F, Pernet-Gallay K, Laulagnier K, Fraboulet Set al. Exosomes as a novel way of interneuronal communication. Biochem Soc Trans. 2013; 41: 241–4.
  • Frühbeis C, Frohlich D, Kuo WP, Kramer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013; 7: 182.
  • Koles K, Budnik V. Exosomes go with the Wnt. Cell Logist. 2012; 2: 169–73.
  • Prada I, Furlan R, Matteoli M, Verderio C. Classical and unconventional pathways of vesicular release in microglia. Glia. 2013; 61: 1003–17.
  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29: 341–5.
  • Wood MJ, O'Loughlin AJ, Samira L. Exosomes and the blood-brain barrier: implications for neurological diseases. Ther Deliv. 2011; 2: 1095–9.
  • Grapp M, Wrede A, Schweizer M, Huwel S, Galla HJ, Snaidero Net al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013; 4: 2123.
  • Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Turco DDet al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 2014; 12: e1001874.
  • Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon Get al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011; 46: 409–18.
  • Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas CVet al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 2014; 42: 9195–208.
  • Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014; 3 doi: http://dx.doi.org/10.3402/jev.v3.24722.
  • Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi Net al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell. 2009; 139: 393–404.
  • Korkut C, Li Y, Koles K, Brewer C, Ashley J, Yoshihara Met al. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron. 2013; 77: 1039–46.
  • Wang J, Silva M, Haas LA, Morsci NS, Nguyen KC, Hall DHet al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol. 2014; 24: 519–25.
  • Gabrielli M, Battista N, Riganti L, Prada I, Antonucci F, Cantone Let al. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep. 2015; 16: 213–20.
  • Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M, Perrotta Cet al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 2012; 31: 1231–40.
  • Verderio C, Muzio L, Turola E, Bergami A, Novellino L, Ruffini Fet al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann Neurol. 2012; 72: 610–24.
  • Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem. 2012; 287: 10977–89.
  • Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab ASet al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013; 11: e1001604.
  • Frohlich D, Kuo WP, Fruhbeis C, Sun JJ, Zehendner CM, Luhmann HJet al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans Roy Soc Lond B Biol Sci. 2014; 369:20130510
  • Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013; 61: 1795–806.
  • Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Yet al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013; 31: 2737–46.
  • Pusic AD, Kraig RP. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia. 2014; 62: 284–99.
  • Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012; 3: 228.
  • Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?. Front Physiol. 2012; 3: 124.
  • Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008; 118: 1311–21.
  • Cox FE. History of human parasitology. Clin Microbiol Rev. 2002; 15: 595–612.
  • Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010; 74: 81–94.
  • Schertzer JW, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol. 2013; 23: 118–30.
  • Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol. 2013; 3: 49.
  • Torrecilhas AC, Schumacher RI, Alves MJ, Colli W. Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes Infect. 2012; 14: 1465–74.
  • Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal Det al. Extracellular vesicles in parasitic diseases. J Extracell Vesicles. 2014; 3 doi: http://dx.doi.org/10.3402/jev.v3.25040 [PubMed CentralFull Text].
  • Senft AW, Philpott DE, Pelofsky AH. Electron microscope observations of the integument, flame cells, and gut of Schistosoma mansoni. J Parasitol. 1961; 47: 217–29.
  • Threadgold LT. The ultrastructure of the “cuticle” of Fasciola hepatica. Exp Cell Res. 1963; 30: 238–42.
  • Mulvenna J, Moertel L, Jones MK, Nawaratna S, Lovas EM, Gobert GNet al. Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol. 2010; 40: 543–54.
  • Schulte L, Lovas E, Green K, Mulvenna J, Gobert GN, Morgan Get al. Tetraspanin-2 localisation in high pressure frozen and freeze-substituted Schistosoma mansoni adult males reveals its distribution in membranes of tegumentary vesicles. Int J Parasitol. 2013; 43: 785–93.
  • Marcilla A, Trelis M, Cortes A, Sotillo J, Cantalapiedra F, Minguez MTet al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One. 2012; 7: e45974.
  • Toledo R, Bernal MD, Marcilla A. Proteomics of foodborne trematodes. J Proteomics. 2011; 74: 1485–503.
  • Coakley G, Simbari F, McSorley H, Maizels R, Buck A. Secreted exosomes from Heligmosomoides polygyrus modulate cellular responses of the murine host. J Extracell Vesicles. 2014; 3 24214, doi: http://dx.doi.org/10.3402/jev.v3.24214.
  • Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJet al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol. 2012; 132: 76–89.
  • Wang T, Van Steendam K, Dhaenens M, Vlaminck J, Deforce D, Jex ARet al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLoS Negl Trop Dis. 2013; 7: e2467.
  • Bernal D, Trelis M, Montaner S, Cantalapiedra F, Galiano A, Hackenberg Met al. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics. 2014; 105: 232–41.
  • Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan Tet al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014; 5: 5488.
  • Montaner S, Galiano A, Trelis M, Martin-Jaular L, Del Portillo HA, Bernal Det al. The role of extracellular vesicles in modulating the host immune response during parasitic infections. Front Immunol. 2014; 5: 433.
  • Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJet al. The trypanosomiases. Lancet. 2003; 362: 1469–80.
  • Goncalves MF, Umezawa ES, Katzin AM, de Souza W, Alves MJ, Zingales Bet al. Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol. 1991; 72: 43–53.
  • Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez Aet al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res. 2013; 12: 883–97.
  • Geiger A, Hirtz C, Becue T, Bellard E, Centeno D, Gargani Det al. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol. 2010; 10: 20.
  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida ICet al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell. 2008; 7: 58–67.
  • Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JAet al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS Pathog. 2013; 9: e1003482.
  • Lambertz U, Silverman JM, Nandan D, McMaster WR, Clos J, Foster LJet al. Secreted virulence factors and immune evasion in visceral leishmaniasis. J Leukoc Biol. 2012; 91: 887–99.
  • Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, Wang Cet al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci. 2010; 123: 842–52.
  • Santarem N, Racine G, Silvestre R, Cordeiro-da-Silva A, Ouellette M. Exoproteome dynamics in Leishmania infantum. J Proteomics. 2013; 84: 106–18.
  • Hassani K, Antoniak E, Jardim A, Olivier M. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function. PLoS One. 2011; 6: e18724.
  • Garcia-Silva MR, Cura das Neves RF, Cabrera-Cabrera F, Sanguinetti J, Medeiros LC, Robello Cet al. Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitol Res. 2014; 113: 285–304.
  • Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly Iet al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol. 2010; 185: 5011–22.
  • Halle M, Gomez MA, Stuible M, Shimizu H, McMaster WR, Olivier Met al. The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation. J Biol Chem. 2009; 284: 6893–908.
  • Jaramillo M, Gomez MA, Larsson O, Shio MT, Topisirovic I, Contreras Iet al. Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe. 2011; 9: 331–41.
  • Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One. 2014; 9: e95007.
  • Ghosh J, Bose M, Roy S, Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe. 2013; 13: 277–88.
  • Couper KN, Barnes T, Hafalla JC, Combes V, Ryffel B, Secher Tet al. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog. 2010; 6: e1000744.
  • Nantakomol D, Dondorp AM, Krudsood S, Udomsangpetch R, Pattanapanyasat K, Combes Vet al. Circulating red cell-derived microparticles in human malariam. The Journal of infectious diseases. 2011; 203: 700–6.
  • Campos FM, Franklin BS, Teixeira-Carvalho A, Filho AL, de Paula SC, Fontes CJet al. Augmented plasma microparticles during acute Plasmodium vivax infection. Malar J. 2010; 9: 327.
  • Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug Met al. Cell–cell communication between malaria parasites promotes sexual differentiation via exosome-like vesicles. Cell. 2013; 153: 1120–33.
  • Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev Iet al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe. 2013;13:521–34
  • Hu G, Gong AY, Roth AL, Huang BQ, Ward HD, Zhu Get al. Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog. 2013; 9: e1003261.
  • Pope SM, Lässer C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation. J Extracell Vesicles. 2013; 2 http://dx.doi.org/10.3402/jev.v2i0.22484.
  • Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One. 2014; 9: e94089.
  • Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim Set al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009; 9: 5425–36.
  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Ann Rev Microbiol. 2010; 64: 163–84.
  • Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002; 32: 1–13.
  • MacDonald IA, Kuehn MJ. Offense and defense: microbial membrane vesicles play both ways. Res Microbiol. 2012; 163: 607–18.
  • Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 2004; 23: 4538–49.
  • Manning AJ, Kuehn MJ. Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol. 2013; 23: 131–41.
  • Wai SN, Lindmark B, Soderblom T, Takade A, Westermark M, Oscarsson Jet al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003; 115: 25–35.
  • Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005; 437: 422–5.
  • Mashburn-Warren L, McLean RJ, Whiteley M. Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology. 2008; 6: 214–19.
  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Hoiby N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother. 2000; 45: 9–13.
  • Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006; 61: 839–46.
  • Schaar V, Paulsson M, Morgelin M, Riesbeck K. Outer membrane vesicles shield Moraxella catarrhalis beta-lactamase from neutralization by serum IgG. J Antimicrob Chemother. 2013; 68: 593–600.
  • Schaar V, Uddback I, Nordstrom T, Riesbeck K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing beta-lactamase derived from Haemophilus influenzae. J Antimicrob Chemother. 2014; 69: 117–20.
  • Dorward DW, Garon CF, Judd RC. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol. 1989; 171: 2499–505.
  • Rumbo C, Fernandez-Moreira E, Merino M, Poza M, Mendez JA, Soares NCet al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011; 55: 3084–90.
  • Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol. 2000; 66: 4414–20.
  • Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci USA. 2010; 107: 19002–7.
  • Shen G, Zhou E, Alspaugh JA, Wang P. Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. Eukaryot Cell. 2012; 11: 471–81.
  • McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol. 2007; 63: 545–58.
  • Grenier D, Belanger M. Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect Immun. 1991; 59: 3004–8.
  • Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LYet al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol. 2012; 78: 6217–24.
  • Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011; 11: 258.
  • Schooling SR, Beveridge TJ. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol. 2006; 188: 5945–57.
  • Inagaki S, Onishi S, Kuramitsu HK, Sharma A. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia.”. Infect Immun. 2006; 74: 5023–8.
  • Schooling SR, Hubley A, Beveridge TJ. Interactions of DNA with biofilm-derived membrane vesicles. J Bacteriol. 2009; 191: 4097–102.
  • Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai Ket al. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 2009; 9: 197.
  • Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O'Toole GA. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. J Antimicrob Chemother. 2012; 67: 2673–81.
  • Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol. 1996; 178: 2767–74.
  • Li Z, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998; 180: 5478–83.
  • Zhang G, Ducatelle R, Pasmans F, D'Herde K, Huang L, Smet Aet al. Effects of Helicobacter suis gamma-glutamyl transpeptidase on lymphocytes: modulation by glutamine and glutathione supplementation and outer membrane vesicles as a putative delivery route of the enzyme. PLoS One. 2013; 8: e77966.
  • Wurdinger T, Gatson NN, Balaj L, Kaur B, Breakefield XO, Pegtel DM. Extracellular vesicles and their convergence with viral pathways. Adv Virol. 2012; 2012: 767694.
  • Meckes DG Jr., Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci USA. 2010; 107: 20370–5.
  • Flanagan J, Middeldorp J, Sculley T. Localization of the Epstein-Barr virus protein LMP 1 to exosomes. J Gen Virol. 2003; 84: 1871–9.
  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JLet al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA. 2010; 107: 6328–33.
  • Canitano A, Venturi G, Borghi M, Ammendolia MG, Fais S. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett. 2013; 337: 193–9.
  • Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IBet al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol. 2012; 189: 3795–9.
  • Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski Eet al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem. 2013; 288: 20014–33.
  • Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J, Whitten-Bauer Cet al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe. 2012; 12: 558–70.
  • Nour AM, Modis Y. Endosomal vesicles as vehicles for viral genomes. Trends Cell Biol. 2014; 24: 449–54.
  • Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco Jet al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood. 2009; 113: 2732–41.
  • Regente M, Corti-Monzon G, Maldonado AM, Pinedo M, Jorrin J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 2009; 583: 3363–6.
  • Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Yet al. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem. 2012; 287: 16820–34.
  • Lu C, Zainal Z, Tucker GA, Lycett GW. Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene. Plant Cell. 2001; 13: 1819–33.
  • de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM. Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell. 2005; 17: 2564–79.
  • An Q, Huckelhoven R, Kogel KH, van Bel AJ. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol. 2006; 8: 1009–19.
  • Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science. 2012; 338: 1093–7.
  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Yet al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012; 22: 107–26.
  • Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol. 2013; 10: 1080–6.
  • Vidal M, Sainte-Marie J, Philippot JR, Bienvenue A. Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase.”. J Cell Physiol. 1989; 140: 455–62.
  • Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer Jet al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003; 278: 10963–72.
  • Laulagnier K, Vincent-Schneider H, Hamdi S, Subra C, Lankar D, Record M. Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol Dis. 2005; 35: 116–21.
  • Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol. 2012; 189: 744–54.
  • Vallejo MC, Nakayasu ES, Longo LV, Ganiko L, Lopes FG, Matsuo ALet al. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS One. 2012; 7: e39463.
  • Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski Aet al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 2013; 1831: 1302–9.
  • Arienti G, Polci A, De Cosmo A, Saccardi C, Carlini E, Palmerini CA. Lipid fatty acid and protein pattern of equine prostasome-like vesicles. Comp Biochem Physiol B Biochem Mol Biol. 2001; 128: 661–6.
  • Piehl LL, Cisale H, Torres N, Capani F, Sterin-Speziale N, Hager A. Biochemical characterization and membrane fluidity of membranous vesicles isolated from boar seminal plasma. Anim Reprod Sci. 2006; 92: 401–10.
  • Weerheim AM, Kolb AM, Sturk A, Nieuwland R. Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem. 2002; 302: 191–8.
  • Del Boccio P, Raimondo F, Pieragostino D, Morosi L, Cozzi G, Sacchetta Pet al. A hyphenated microLC-Q-TOF-MS platform for exosomal lipidomics investigations: application to RCC urinary exosomes. Electrophoresis. 2012; 33: 689–96.
  • Schaar V, de Vries SP, Perez Vidakovics ML, Bootsma HJ, Larsson L, Hermans PWet al. Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells. Cell Microbiol. 2011; 13: 432–49.
  • Bomberger JM, Ye S, Maceachran DP, Koeppen K, Barnaby RL, O'Toole GAet al. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. PLoS Pathog. 2011; 7: e1001325.
  • Bomberger JM, Ely KH, Bangia N, Ye S, Green KA, Green WRet al. Pseudomonas aeruginosa Cif Protein Enhances the Ubiquitination and Proteasomal Degradation of the Transporter Associated with Antigen Processing (TAP) and Reduces Major Histocompatibility Complex (MHC) Class I Antigen Presentation. J Biol Chem. 2014; 289: 152–62.
  • Bartruff JB, Yukna RA, Layman DL. Outer membrane vesicles from Porphyromonas gingivalis affect the growth and function of cultured human gingival fibroblasts and umbilical vein endothelial cells. J Periodontol. 2005; 76: 972–9.
  • Vidakovics ML, Jendholm J, Morgelin M, Mansson A, Larsson C, Cardell LOet al. B cell activation by outer membrane vesicles – a novel virulence mechanism. PLoS Pathog. 2010; 6: e1000724.
  • Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi Met al. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect. 2014; 16: 6–16.
  • Rompikuntal PK, Thay B, Khan MK, Alanko J, Penttinen AM, Asikainen Set al. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun. 2012; 80: 31–42.
  • Sharpe SW, Kuehn MJ, Mason KM. Elicitation of epithelial cell-derived immune effectors by outer membrane vesicles of nontypeable Haemophilus influenzae. Infect Immun. 2011; 79: 4361–9.
  • Ismail S, Hampton MB, Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun. 2003; 71: 5670–5.
  • Chitcholtan K, Hampton MB, Keenan JI. Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori. Carcinogenesis. 2008; 29: 2400–5.
  • Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AMet al. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin Appl. 2009; 3: 785–96.
  • Parker H, Chitcholtan K, Hampton MB, Keenan JI. Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun. 2010; 78: 5054–61.
  • Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NFet al. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun. 2012; 80: 4089–98.
  • Dormann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer Vet al. Cell-autonomous defense, re-organization and trafficking of membranes in plant–microbe interactions. New Phytol. 2014; 204: 815–22.
  • Huckelhoven R. Transport and secretion in plant–microbe interactions. Curr Opin Plant Biol. 2007; 10: 573–9.