622
Views
0
CrossRef citations to date
0
Altmetric
Review

Computational Strategies for Metabolite Identification in Metabolomics

Pages 1579-1596 | Published online: 07 Dec 2009

Bibliography

  • German JB , HammockBD, WatkinsSM: Metabolomics: building on a century of biochemistry to guide human health. Metabolomics1(1), 3–9 (2005).
  • Wishart DS . Current progress in computational metabolomics. Brief Bioinform. 8(5), 279–293 (2007).
  • Trygg J , HolmesE, LundstedtT. Chemometrics in metabonomics. J. Proteome Res. 6(2), 469–479 (2007).
  • Xiayan L , Legido-QuigleyC. Advances in separation science applied to metabonomics. Electrophoresis18, 3724–3736 (2008).
  • Issaq HJ , AbbottE, VeenstraTD. Utility of separation science in metabolomic studies. J. Sep. Sci. 31(11), 1936–1947 (2008).
  • Guo K , LiL. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem. 81(10), 3919–3932 (2009).
  • Shriner RL , HermannCKF, MorrillTC, CurtinDY, FusonRC. The Systematic Identification of Organic Compounds (8th Edition). Wiley, NY, USA (2003).
  • Roy SM , BeckerCH. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling. Methods Mol. Biol. 359, 87–105 (2007).
  • Wishart DS , LewisMJ, MorrisseyJAet al. The human cerebrospinal fluid metabolome. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2), 164–173 (2008).
  • Wishart DS . Quantitative metabolomics using NMR. Trends Anal. Chem. 27, 228–237 (2008).
  • Rumsfeld D . Press Briefing. 12 February 2002.
  • Fiehn O . Metabolomics: the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
  • Dunn WB . Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys. Biol. 2008 5(1), 11001 (2008).
  • Coles SJ , DayNE, Murray-RustP, RzepaHS, ZhangY. Enhancement of the chemical semantic web through the use of In ChI identifiers. Org. Biomol. Chem. 3(10), 1832–1834 (2005).
  • Wilson DM , BurlingameAL. Deuterium and carbon-13 tracer studies of ethanol metabolism in the rat by 2H, 1H-decoupled 13C nuclear magnetic resonance. Biochem. Biophys. Res. Commun. 56(3), 828–835 (1974).
  • Shulman RG , RothmanDL. 13C NMR of intermediary metabolism: implications for systemic physiology. Annu. Rev. Physiol. 63, 15–48 (2001).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Reo NV . NMR-based metabolomics. Drug Chem. Toxicol. 25(4), 375–382 (2002).
  • Weljie AM , NewtonJ, MercierP, CarlsonE, SlupskyCM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78(13), 4430–4442 (2006).
  • Rossé G , NeidigP, SchröderH. Automated structure verification of small molecules libraries using 1D and 2D NMR techniques. Methods Mol. Biol. 201, 123–139 (2002).
  • Xia J , BjorndahlTC, TangP, WishartDS. MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics9, 507 (2008).
  • Steinbeck C , KrauseS, KuhnS. NMRShiftDB – constructing a free chemical information system with open-source components. J. Chem. Inf. Comput. Sci. 43(6), 1733–1739 (2003).
  • Wishart DS , KnoxC, GuoACet al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37(Database issue), D603–D610 (2009).
  • Ulrich EL , AkutsuH, DoreleijersJFet al. BioMagResBank. Nucleic Acids Res. 36(Database issue), D402–D408 (2008).
  • Akiyama K , ChikayamaE, YuasaHet al. PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol. 8(3–4), 339–345 (2008).
  • Tanaka K , BuddMA, EfronML, IsselbacherKJ. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc. Natl Acad. Sci. USA56, 236–242 (1966).
  • Kuhara T . Gas chromatographic–mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom. Rev. 24, 814–827 (2005).
  • Lisec J , SchauerN, KopkaJ, WillmitzerL, FernieAR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 1(1), 387–396 (2006).
  • Matsumoto I , KuharaT. A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry – rapid, practical and simultaneous urinary metabolites analysis. Mass Spectrom. Rev. 15, 43–57 (1996).
  • Halket JM , WatermanD, PrzyborowskaAM, PatelRKP, FraserPD, BramleyPM. Chemical derivatization and mass spectral libraries in metabolite profiling by GC–MS and LC–MS/MS. J. Exp. Botany56(410), 219–243 (2005).
  • A J , TryggJ, GullbergJet al. Extraction and GC–MS analysis of the human blood plasma metabolome. Anal. Chem. 77, 8086–8094 (2005).
  • Stein SE . An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spect. 10(8), 770–781 (1999).
  • Kovats E . Gas chromatographische Charakteriserung organischer Verbindungen. I. Retentions indices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta41, 1915–1932 (1958).
  • Draper J , EnotDP, ParkerDet al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules‘. BMC Bioinformatics10(1), 227 (2009).
  • Lu H , LiangY, DunnWB, ShenH, KellDB. Comparative evaluation of software for deconvolution of metabolomics data based on GC–TOF–MS. Trends Anal. Chem. 27, 215–227 (2008).
  • Kopka J , SchauerN, KruegerSet al. [email protected]: the Golm Metabolome Database. Bioinformatics21(8), 1635–1638 (2005).
  • Brown M , DunnWB, DobsonPet al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst134(7), 1322–1332 (2009).
  • Skogerson K , RunnebaumR, WohlgemuthG, de Ropp J, Heymann H, Fiehn O. Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body. J. Agric. Food Chem. (2009) (Epub ahead of print).
  • Henion J , SkrabalakD, DeweyE, MaylinG. Micro LC–MS in drug analysis and metabolism studies. Drug Metab. Rev. 14(5), 961–1003 (1983).
  • Rashed MS , OzandPT, BucknallMP, LittleD. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr. Res. 38(3), 324–331 (1995).
  • Taguchi R , NishijimaM, ShimizuT. Basic analytical systems for lipidomics by mass spectrometry in Japan. Meth. Enzymol. 432, 185–211 (2007).
  • Hopley C , BristowT, LubbenAet al. Towards a universal product ion mass spectral library – reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Commun. Mass Spectrom. 22(12), 1779–1786 (2008).
  • Oberacher H , PavlicM, LibisellerKet al. On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009).
  • Okuda S , YamadaT, HamajimaMet al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 36, W423–W426 (2008).
  • Wheeler DL , BarrettT, BensonDAet al. Database resources of the National Centre for Biotechnology Information. Nucleic Acids Res. 35, 5–12 (2007).
  • Shinbo Y , NakamuraY, Altaf-Ul-AminMet al. KNApSAcK: a comprehensive species-metabolite relationship database. Biotechnol. Agr. Forest57, 166–181 (2006).
  • Sud M , FahyE, CotterDet al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, 527–532 (2007).
  • Smith CA , O’MailleG, WantEJet al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27(6), 747–751 (2005).
  • Kind T , FiehnO. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics8, 105 (2007).
  • Böcker S , LetzelMC, LiptákZ, PervukhinA. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics25(2), 218–224 (2009).
  • Nakamura Y , KanayaS, SakuraiNet al. A tool for high-throughput prediction of molecular formulas and identification of isotopic peaks from large scale mass spectrometry data. Plant Biotech. 25, 377–380 (2008).
  • Noury S , SilviB, GillespieRJ. Chemical bonding in hypervalent molecules: is the octet rule relevant? Inorg. Chemistry411, 2164–2172 (2002).
  • Senior JK . Partition and their representative graphs. Am. J. Math. 73, 663–689 (1951).
  • Iijima Y , NakamuraY, OgataYet al. Metabolite annotations based on the integration of mass spectral information. Plant J. 54(5), 949–962 (2008).
  • Sana TR , RoarkJC, LiX, WaddellK, FischerSM. Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF–MS. J. Biomol. Tech. 19(4), 258–266 (2008).
  • Hill DW , KerteszTM, FontaineD, FriedmanR, GrantDF. Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008).
  • Matsuda F , Yonekura-SakakibaraK, NiidaR, KuromoriT, ShinozakiK, SaitoK. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J. 57(3), 555–577 (2009).
  • Takahashi H , KaiK, ShinboYet al. Metabolomics approach for determining growth-specific metabolites based on fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 391, 2769–2782 (2008).
  • Loftus N , MisekiK, IidaJ, GikaHG, TheodoridisG, WilsonID. Profiling and biomarker identification in plasma from different Zucker rat strains via high mass accuracy multistage mass spectrometric analysis using liquid chromatography/mass spectrometry with a quadrupole ion trap-time of flight mass spectrometer. Rapid Commun. Mass Spectrom. 22(16), 2547–2554 (2008).
  • Steinbeck C . Recent developments in automated structure elucidation of natural products. Nat. Prod. Rep. 21, 512–518 (2004).
  • Jaspars M . Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy. Nat. Prod. Rep. 16, 241–248 (1999).
  • Lederberg J , SutherlandGL, BuchananBGet al. Application of artificial intelligence to chemical inference. J. Am. Chem. Soc. 91, 2973–2976 (1968).
  • Kuhn S , EgerttB, NeumannS, SteinbeckC. Building blocks for automated elucidation of metabolites: machine learning methods for NMR prediction. BMC Bioinformatics9, 400 (2008).
  • Korytko A , SchulzKP, MadisonMS, MunkME. HOUDINI: a new approach to computer-based structure generation. J. Chem. Inf. Comput. Sci. 43(5), 1434–1446 (2003).
  • Steinbeck C . SENECA: a platform-independent, distributed, and parallel system for computer-assisted structure elucidation in organic chemistry. J. Chem. Inf. Comput. Sci. 41(6), 1500–1507 (2001).
  • Junker J , MaierW, LindelT, KöckM. Computer-assisted constitutional assignment of large molecules: COCON analysis of ascomycin. Org. Lett. 1(5), 737–740 (1999).
  • Elyashberg M , BlinovK, MolodtsovS, SmurnyyY, WilliamsAJ, ChuranovaT. Computer-assisted methods for molecular elucidation: realizing a spectroscopist’s dream. J. Cheminformatics1(3) (2009).
  • Nassar AE , AdamsPE. Metabolite characterization in drug discovery utilizing robotic liquid-handling, quadruple time-of-flight mass spectrometry and in silico prediction. Curr. Drug Metab. 4(4), 259–271 (2003).
  • Pelander A , TyrkköE, OjanperäI. In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-flight mass spectrometry urine drug screening. Rapid Commun. Mass Spectrom. 23(4), 506–514 (2009).
  • Langowski J , LongA. Computer systems for the prediction of xenobiotic metabolism. Adv. Drug Deliv. Rev. 54, 407–415 (2002).
  • Darvas F . MetabolExpert, an expert system for predicting metabolism of substances. In:QSAR in Environmental Toxicology. Dordecht Riedel, Dordrecht, The Netherlands 71–81 (1987).
  • Ekins S , AndreyevS, RyabovAet al. Computational prediction of human drug metabolism. Expert Opin. Drug Metab. Toxicol. 1(2), 303–324 (2005).
  • Greene N , JudsonPN, LangowskiJJ, MarchantCA. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ. Res. 10, 299–314 (1999).
  • Hernández F , GrimaltS, PozoOJ, SanchoJV. Use of ultra-high-pressure liquid chromatography-quadrupole time-of-flight MS to discover the presence of pesticide metabolites in food samples. J. Sep. Sci. 32(13), 2245–2261 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.