226
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabonomic Studies of Schizophrenia and Psychotropic Medications: Focus on Alterations in CNS Energy Homeostasis

Pages 1615-1626 | Published online: 07 Dec 2009

Bibliography

  • Lang UE , PulsI, MullerDJ, Strutz-SeebohmN, GallinatJ. Molecular mechanisms of schizophrenia. Cell Physiol. Biochem. 20(6), 687–702 (2007).
  • Purcell SM , WrayNR, StoneJLet al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature460(7256), 748–752 (2009).
  • Nikolaus S , AntkeC, MullerHW. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav. Brain Res. 204(1), 32–66 (2009).
  • Howes OD , KapurS. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr. Bull. 35(3), 549–562 (2009).
  • Karlsgodt KH , SunD, JimenezAMet al. Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev. Psychopathol. 20(4), 1297–1327 (2008).
  • Fatemi SH , FolsomTD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 35(3), 528–548 (2009).
  • Davis KL , StewartDG, FriedmanJIet al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry60(5), 443–456 (2003).
  • Meyer U , FeldonJ, YeeBK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr. Bull. 35(5), 959–972 (2008).
  • Chubb JE , BradshawNJ, SoaresDC, PorteousDJ, MillarJK. The DISC locus in psychiatric illness. Mol. Psychiatry13(1), 36–64 (2008).
  • Schumacher J , LajeG, Abou Jamra Ret al. The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum. Mol. Genet. 18(14), 2719–2727 (2009).
  • Wong AH , Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci. Biobehav. Rev. 27(3), 269–306 (2003).
  • Thomas EA . Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol. Neurobiol. 34(2), 109–128 (2006).
  • Prabakaran S , SwattonJE, RyanMMet al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry9(7), 684–697, 643 (2004).
  • Iwamoto K , KatoT. Gene expression profiling in schizophrenia and related mental disorders. Neuroscientist12(4), 349–361 (2006).
  • Schreurs V , VancampfortD. Metabolic syndrome in people with schizophrenia: a review. World Psychiatry8(1), 15–22 (2009).
  • Rezin GT , CardosoMR, GoncalvesCLet al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 53(6–8), 395–400 (2008).
  • Rezin GT , AmboniG, ZugnoAI, QuevedoJ, StreckEL. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res. 34(6), 1021–1029 (2009).
  • Martins-de-Souza D , GattazWF, SchmittAet al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J. Psychiatr. Res. 43(11), 978–986 (2009).
  • Ma D , ChanMK, LockstoneHEet al. Antipsychotic treatment alters protein expression associated with presynaptic function and nervous system development in rat frontal cortex. J. Proteome Res. 8(7), 3284–3297 (2009).
  • Kaddurah-Daouk R , McEvoyJ, BaillieRAet al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry12(10), 934–945 (2007).
  • McLoughlin GA , MaD, TsangTMet al. Analyzing the effects of psychotropic drugs on metabolite profiles in rat brain using 1H NMR spectroscopy. J. Proteome Res. 8(4), 1943–1952 (2009).
  • Quinones MP , Kaddurah-DaoukR. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis. 35(2), 165–176 (2009).
  • Schwarz E , BahnS. Biomarker discovery in psychiatric disorders. Electrophoresis29(13), 2884–2890 (2008).
  • Ben-Shachar D . Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J. Neurochem. 83(6), 1241–1251 (2002).
  • Ben-Shachar D , BonneO, ChisinRet al. Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: A FDG-PET study. Prog. Neuropsychopharmacol. Biol. Psychiatry31(4), 807–813 (2007).
  • Ben-Shachar D , ZukR, GazawiH, LjubuncicP. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem. Pharmacol. 67(10), 1965–1974 (2004).
  • Dror N , KleinE, KarryRet al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol. Psychiatry7(9), 995–1001 (2002).
  • Uranova N , OrlovskayaD, VikhrevaOet al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull. 55(5), 597–610 (2001).
  • Prince JA , BlennowK, GottfriesCG, KarlssonI, OrelandL. Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology21(3), 372–379 (1999).
  • Maurer I , ZierzS, MollerH. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48(1), 125–136 (2001).
  • Fuke S , KametaniM, KatoT. Quantitative analysis of the 4977-bp common deletion of mitochondrial DNA in postmortem frontal cortex from patients with bipolar disorder and schizophrenia. Neurosci. Lett. 439(2), 173–177 (2008).
  • Wood SJ , YucelM, PantelisC, BerkM. Neurobiology of schizophrenia spectrum disorders: the role of oxidative stress. Ann. Acad. Med. Singapore38(5), 396–396 (2009).
  • Chua SE , McKennaPJ. Schizophrenia – a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br. J. Psychiatry166(5), 563–582 (1995).
  • Andreasen NC , O’LearyDS, FlaumMet al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet349(9067), 1730–1734 (1997).
  • Buchsbaum MS , HazlettEA. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr. Bull. 24(3), 343–364 (1998).
  • Kegeles LS , HumaranTJ, MannJJ. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol. Psychiatry44(6), 382–398 (1998).
  • Fujimoto T , NakanoT, TakanoT, HokazonoY, AsakuraT, TsujiT. Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr. Scand. 86(6), 455–462 (1992).
  • Volz HR , RiehemannS, MaurerIet al. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol. Psychiatry47(11), 954–961 (2000).
  • Burbaeva G , SavushkinaOK, BokshaIS. Creatine kinase BB in brain in schizophrenia. World J. Biol. Psychiatry4(4), 177–183 (2003).
  • Dean B , BoerS, GibbonsA, MoneyT, ScarrE. Recent advances in postmortem pathology and neurochemistry in schizophrenia. Curr. Opin. Psychiatry22(2), 154–160 (2009).
  • Altar CA , VawterMP, GinsbergSD. Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology34(1), 18–54 (2009).
  • Middleton FA , MirnicsK, PierriJN, LewisDA, LevittP. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22(7), 2718–2729 (2002).
  • Vawter MP , BarrettT, CheadleCet al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res. Bull. 55(5), 641–650 (2001).
  • Stone WS , FaraoneSV, SuJ, TarboxSI, Van Eerdewegh P, Tsuang MT. Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 127B(1), 5–10 (2004).
  • Stone M , Hartmann-PetersenR, SeegerM, Bech-OtschirD, WallaceM, GordonC. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol. 344(3), 697–706 (2004).
  • Winton-Brown TT , KapurS. Neuroimaging of schizophrenia: what it reveals about the disease and what it tells us about a patient. Ann. Acad. Med. Singapore38(5), 433–433 (2009).
  • Dager SR , CorriganNM, RichardsTL, PosseS. Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Top Magn. Reson. Imaging19(2), 81–96 (2008).
  • Fukumoto-Motoshita M , MatsuuraM, OhkuboTet al. Hyperfrontality in patients with schizophrenia during saccade and antisaccade tasks: a study with fMRI. Psychiatry Clin. Neurosci. 63(2), 209–217 (2009).
  • Pieczenik SR , NeustadtJ. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83(1), 84–92 (2007).
  • Bubenikova-Valesova V , HoracekJ, VrajovaM, HoschlC. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 32(5), 1014–1023 (2008).
  • Mouri A , NodaY, EnomotoT, NabeshimaT. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem. Int. 51(2–4), 173–184 (2007).
  • Morris BJ , CochranSM, PrattJA. PCP: from pharmacology to modelling schizophrenia. Curr. Opin. Pharmacol. 5(1), 101–106 (2005).
  • de Oliveira L , DosSSCM, BortolinTet al. Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog. Neuropsychopharmacol. Biol. Psychiatry33(6), 1003–1008 (2009).
  • Rezin GT , GoncalvesCL, DaufenbachJFet al. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res. Bull. 79(6), 418–421 (2009).
  • Paulson L , MartinP, PerssonAet al. Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J. Neurosci. Res. 71(4), 526–533 (2003).
  • Paulson L , MartinP, NilssonCLet al. Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics4(3), 819–825 (2004).
  • Paulson L , MartinP, LjungE, BlennowK, DavidssonP. Effects on rat thalamic proteome by acute and subchronic MK-801-treatment. Eur. J. Pharmacol. 505(1–3), 103–109 (2004).
  • Cochran SM , KennedyM, McKercharCE, StewardLJ, PrattJA, MorrisBJ. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology28(2), 265–275 (2003).
  • Willis CL , RayDE. Antioxidants attenuate MK-801-induced cortical neurotoxicity in the rat. Neurotoxicology28(1), 161–167 (2007).
  • Harris LW , LockstoneHE, KhaitovichP, WeickertCS, WebsterMJ, BahnS. Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med. Genomics2, 28 (2009).
  • Ji B , LaY, GaoLet al. A Comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J. Proteome Res. 8(7), 3633–3641 (2009).
  • Parikh V , KhanMM, MahadikSP. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 37(1), 43–51 (2003).
  • Fatemi SH . Olanzapine increases glucogenesis by multiple pathways in brain and muscle. Mol. Psychiatry11(6), 524–525 (2006).
  • Fatemi SH , ReutimanTJ, FolsomTDet al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology31(9), 1888–1899 (2006).
  • Stephan KE , FristonKJ, FrithCD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35(3), 509–527 (2009).
  • Lau CG , ZukinRS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8(6), 413–426 (2007).
  • Seeman P . Glutamate and dopamine components in schizophrenia. J. Psychiatry Neurosci. 34(2), 143–149 (2009).
  • Mattson MP , GleichmannM, ChengA. Mitochondria in neuroplasticity and neurological disorders. Neuron60(5), 748–766 (2008).
  • Ben-Shachar D , LaifenfeldD. Mitochondria, synaptic plasticity and schizophrenia. Int. Rev. Neurobiol. 59, 273–296 (2004).
  • Jarskog LF , GilmoreJH, SelingerES, LiebermanJA. Cortical Bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol. Psychiatry48(7), 641–650 (2000).
  • Doyle CA , SlaterP. Application of [3H]L-N(G)-nitro-arginine labelling to measure cerebellar nitric oxide synthase in patients with schizophrenia. Neurosci. Lett. 202(1–2), 49–52 (1995).
  • Mahadik SP , SchefferRE. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids55(1–2), 45–54 (1996).
  • Mahadik SP , MukherjeeS. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr. Res. 19(1), 1–17 (1996).
  • Kaddurah-Daouk R , KrishnanKR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology34(1), 173–186 (2009).
  • Bassett DS , BullmoreET. Human brain networks in health and disease. Curr. Opin. Neurol. 22(4), 340–347 (2009).
  • Noble JM , ScarmeasN. Application of pet imaging to diagnosis of Alzheimer’s disease and mild cognitive impairment. Int. Rev. Neurobiol. 84, 133–149 (2009).
  • Nikolaus S , AntkeC, MullerHW. In vivo imaging of synaptic function in the central nervous system I. Movement disorders and dementia. Behav. Brain Res. 204(1), 1–31 (2009).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological sti muli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Tsang TM , GriffinJL, HaseldenJ, FishC, HolmesE. Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy. Magn. Reson. Med. 53(5), 1018–1024 (2005).
  • Holmes E , TsangTM, HuangJTet al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 3(8), e327 (2006).
  • Tsang TM , HuangJT, HolmesE, BahnS. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J. Proteome Res. 5(4), 756–760 (2006).
  • Huang JT , LewekeFM, TsangTMet al. CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE2(1), e756 (2007).
  • Newcomer JW , CraftS, FucetolaRet al. Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr. Bull. 25(2), 321–335 (1999).
  • Park IH , KimJJ, ChunJet al. Medial prefrontal default-mode hypoactivity affecting trait physical anhedonia in schizophrenia. Psychiatry Res. 171(3), 155–165 (2009).
  • Wood SJ , BergerGE, WellardRMet al. A 1H-MRS investigation of the medial temporal lobe in antipsychotic-naive and early-treated first episode psychosis. Schizophr. Res. 102(1–3), 163–170 (2008).
  • Molina V , SoleraS, SanzJet al. Association between cerebral metabolic and structural abnormalities and cognitive performance in schizophrenia. Psychiatry Res. 173(2), 88–93 (2009).
  • Ohrmann P , SiegmundA, SuslowTet al. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr. Res. 73(2–3), 153–157 (2005).
  • Ohrmann P , SiegmundA, SuslowTet al. Cognitive impairment and in vivo metabolites in first-episode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J. Psychiatr. Res. 41(8), 625–634 (2007).
  • Tsai SJ . Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med. Sci. Monit. 11(9), HY39–HY45 (2005).
  • Tkachev D , MimmackML, HuffakerSJ, RyanM, BahnS. Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int. J. Neuropsychopharmacol. 10(4), 557–563 (2007).
  • Theberge J , BarthaR, DrostDJet al. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am. J. Psychiatry159(11), 1944–1946 (2002).
  • van Elst LT , ValeriusG, BuchertMet al. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol. Psychiatry58(9), 724–730 (2005).
  • Halim ND , LipskaBK, HydeTMet al. Increased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confounds. J. Neurosci. Methods169(1), 208–213 (2008).
  • De Keyser J , MostertJP, KochMW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267(1–2), 3–16 (2008).
  • Khaitovich P , LockstoneHE, WaylandMTet al. Metabolic changes in schizophrenia and human brain evolution. Genome Biol. 9(8), R124 (2008).
  • Moffett JR , RossB, ArunP, MadhavaraoCN, NamboodiriAM. N acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81(2), 89–131 (2007).
  • Chang L , FriedmanJ, ErnstT, ZhongK, TsopelasND, DavisK. Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction. Biol. Psychiatry62(12), 1396–1404 (2007).
  • Atmaca M , YildirimH, OzdemirH, OgurE, TezcanE. Hippocampal 1H MRS in patients with bipolar disorder taking valproate versus valproate plus quetiapine. Psychol. Med. 37(1), 121–129 (2007).
  • Abbott C , BustilloJ. What have we learned from proton magnetic resonance spectroscopy about schizophrenia? A critical update. Curr. Opin. Psychiatry19(2), 135–139 (2006).
  • Sigmundsson T , MaierM, TooneBKet al. Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr. Res. 64(1), 63–71 (2003).
  • Magistretti PJ . Neuron–glia metabolic coupling and plasticity. J. Exp. Biol. 209(Pt 12), 2304–2311 (2006).
  • Fillenz M . The role of lactate in brain metabolism. Neurochem. Int. 47(6), 413–417 (2005).
  • Escartin C , ValetteJ, LebonV, BonventoG. Neuron–astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J. Neurochem. 99(2), 393–401 (2006).
  • Schousboe A , BakLK, SickmannHM, SonnewaldU, WaagepetersenHS. Energy substrates to support glutamatergic and GABAergic synaptic function: role of glycogen, glucose and lactate. Neurotox. Res. 12(4), 263–268 (2007).
  • Sarramea Crespo F , LuqueR, PrietoDet al. Biochemical changes in the cingulum in patients with schizophrenia and chronic bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 258(7), 394–401 (2008).
  • Wood SJ , BergerGE, WellardRMet al. A 1H-MRS investigation of the medial temporal lobe in antipsychotic-naive and early-treated first episode psychosis. Schizophr. Res. 102(1–3), 163–170 (2008).
  • Ongur D , PrescotAP, JensenJE, CohenBM, RenshawPF. Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res. 172(1), 44–48 (2009).
  • Gualano B , ArtioliGG, PoortmansJR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids (2009) (Epub ahead of print).
  • Rae C , Moussa Cel H, Griffin JLet al. A metabolomic approach to ionotropic glutamate receptor subtype function: a nuclear magnetic resonance in vitro investigation. J. Cereb. Blood Flow Metab. 26(8), 1005–1017 (2006).
  • Iltis I , KoskiDM, EberlyLEet al. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized 1H MRS study. NMR Biomed. 22(7), 737–744 (2009).
  • Buckley PF . Update on the treatment and management of schizophrenia and bipolar disorder. CNS Spectr. 13(2 Suppl. 1), 1–10; quiz 11–12 (2008).
  • De Oliveira IR , JuruenaMF. Treatment of psychosis: 30 years of progress. J. Clin. Pharm. Ther. 31(6), 523–534 (2006).
  • Ashby CR Jr , WangRY. Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse24(4), 349–394 (1996).
  • Lublin H , EberhardJ, LevanderS. Current therapy issues and unmet clinical needs in the treatment of schizophrenia: a review of the new generation antipsychotics. Int. Clin. Psychopharmacol. 20(4), 183–198 (2005).
  • Stone JM , PilowskyLS. Novel targets for drugs in schizophrenia. CNS Neurol. Disord. Drug Targets6(4), 265–272 (2007).
  • Horacek J , Bubenikova-ValesovaV, KopecekMet al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs20(5), 389–409 (2006).
  • Wood M , ReavillC. Aripiprazole acts as a selective dopamine D2 receptor partial agonist. Expert Opin. Investig. Drugs16(6), 771–775 (2007).
  • Szulc A , GalinskaB, TarasowEet al. The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry38(5), 214–219 (2005).
  • DelBello MP , CecilKM, AdlerCM, DanielsJP, StrakowskiSM. Neurochemical effects of olanzapine in first-hospitalization manic adolescents: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology31(6), 1264–1273 (2006).
  • Bustillo JR , RowlandLM, JungRet al. Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology33(10), 2456–2466 (2008).
  • Tayoshi S , SumitaniS, TaniguchiKet al. Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS). Schizophr. Res. 108(1–3), 69–77 (2009).
  • Olbrich HM , ValeriusG, RuschNet al. Frontolimbic glutamate alterations in first episode schizophrenia: evidence from a magnetic resonance spectroscopy study. World J. Biol. Psychiatry9(1), 59–63 (2008).
  • Vernaleken I , CummingP, GrunderG. Imaging studies – differential action of typical and atypical antipsychotics in a network perspective. Pharmacopsychiatry41(Suppl. 1), S60–S69 (2008).
  • Laron Z . Insulin and the brain. Arch. Physiol. Biochem. 115(2), 112–116 (2009).
  • Reger MA , WatsonGS, GreenPSet al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology70(6), 440–448 (2008).
  • Oja SS , SaransaariP. Pharmacology of taurine. Proc. West Pharmacol. Soc. 50, 8–15 (2007).
  • Yao JK , DoughertyGGJr, ReddyRDet al. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol. Psychiatry (2009) (Epub ahead of print).
  • Sinclair AJ , ViantMR, BallAKet al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases – a diagnostic tool? NMR Biomed . (2009) (Epub ahead of print).
  • Nebert DW , VesellES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol. Sci. 27(11), 580–586 (2006).
  • Martinez-Forero I , PelaezA, VillosladaP. Pharmacogenomics of multiple sclerosis: in search for a personalized therapy. Expert Opin. Pharmacother. 9(17), 3053–3067 (2008).
  • Villoslada P , SteinmanL, BaranziniSE. Systems biology and its application to the understanding of neurological diseases. Ann. Neurol. 65(2), 124–139 (2009).
  • Giegling I , HartmannAM, GeniusJ, BenninghoffJ, MollerHJ, RujescuD. Systems biology and complex neurobehavioral traits. Pharmacopsychiatry41(Suppl. 1), S32–S36 (2008).
  • Quintana FJ , FarezMF, WeinerHL. Systems biology approaches for the study of multiple sclerosis. J. Cell Mol. Med. 12(4), 1087–1093 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.