417
Views
0
CrossRef citations to date
0
Altmetric
Review

NMR Metabonomics for Mammalian Cell Metabolism Studies

, , &
Pages 1597-1614 | Published online: 18 Jan 2010

Bibliography

  • Nicholson JK , LindonJC, HolmesE. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Lindon JC , NicholsonJK. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu. Rev. Anal. Chem. 1, 45–69 (2008).
  • Kaddurah-Daouk R , KristalBS, WeinshilboumRM. Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol. 48, 653–683 (2008).
  • Lane AN , Fan TW-M, Higashi RM, Tan J, Bousamra M, Miller DM. Prospects for clinical cancer metabolomics using stable isotope tracers. Exp. Mol. Pathol. 86(3), 165–173 (2009).
  • Khoo SHG , Al-RubeaiM. Metabolomics as a complementary tool in cell culture. Biotechnol. Appl. Biochem. 47, 71–84 (2007).
  • Griffin JL , ShockcorJP. Metabolic profiles of cancer cells. Nat. Rev. Cancer4(7), 551–561 (2004).
  • Merz AL , SerkovaNJ. Use of nuclear magnetic resonance-based metabolomics in detecting drug resistance in cancer. Biomark. Med. 3(3), 289–306 (2009).
  • Glunde K , AckerstaffE, MoriN, JacobsMA, BhujwallaZM. Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol. Pharm. 3(5), 496–506 (2006).
  • Lutz NW . From metabolic to metabomic NMR spectroscopy of apoptotic cells. Metabolomics1(3), 251–268 (2005).
  • Wu H , SouthamAD, HinesA, ViantMR. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 372(2), 204–212 (2008).
  • Duarte IF , MarquesJ, LadeirinhaAFet al. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal. Chem. 81(12), 5023–5032 (2009).
  • Teng Q , HuangWL, ColletteTW, EkmanDR, TanC. A direct cell quenching method for cell-culture based metabolomics. Metabolomics5(2), 199–208 (2009).
  • Lindon JC , BeckonertOP, HolmesEet al. High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog. Nucl. Mag. Res. SP55(2), 79–100 (2009).
  • Weybright P , MillisK, CampbellN, CoryDG, SingerS. Gradient, high-resolution, magic angle spinning 1H nuclear magnetic resonance spectroscopy of intact cells. Magn. Reson. Med. 39(3), 337–345 (1998).
  • Aime S , BrunoE, CabellaC, ColombattoS, DigilioG, MaineroV. HR-MAS of cells: a “cellular water shift” due to water–protein interactions?. Magn. Reson. Med. 54(6), 1547–1552 (2005).
  • Griffin JL , BollardM, NicholsonJK, BhakooK. Spectral profiles of cultured neuronal and glial cells derived from HR-MAS 1H spectroscopy. NMR Biomed. 15(6), 375–384 (2002).
  • Hakumaki JM , KauppinenRA. 1H NMR visible lipids in the life and death of cells. TIBS25(8), 357–362 (2000).
  • May GL , WrightLC, HolmesKTet al. Assignment of methylene proton resonance in NMR spectra of embryonic and transformed cells to plasma membrane triglycerides. J. Biol. Chem. 267(7), 3048–3043 (1986).
  • Luciani AM , GrandeS, PalmaAet al. Characterization of 1H NMR detectable mobile lipids in cells from human adenocarcinomas. FEBS J. 276(5), 1333–1346 (2009).
  • Beckwith-Hall BM , BrindleJT, BartonRHet al. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution H-1 NMR spectra of biofluids . Analyst . 127(10), 1283–1288 (2002).
  • Stoyanova R , NichollsAW, NicholsomJK, LindonJC, BrownTR. Automatic alignment of individual peaks in large high-resolution spectral data sets. J. Magn. Reson. 170(2), 329–335 (2004).
  • El-Deredy W , AshmoreSM, BranstonNM, DarlingJL, WilliamsSR, ThomasDG. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks. Cancer Res. 57(19), 4196–4199 (1997).
  • Peet AC , McConvilleC, WilsonMet al. 1H MRS identifies specific metabolite profiles associated with MYCN-amplified and non-amplified tumour subtypes of neuroblastoma cell lines. NMR Biomed. 20(7), 692–700 (2007).
  • Gottschalk M , IvanovaG, CollinsDM, EustaceA, O’ConnorR, BroughamDF. Metabolic studies of human lung carcinoma cell lines using in vitro1H NMR of whole cells and cellular extracts. NMR Biomed. 21(8), 809–819 (2008).
  • Griffin JL , MannCJ, ScottJ, SchouldersCC, NicholsonJK. Choline containing metabolites during cell transfection: an insight into magnetic resonance spectroscopy detectable changes. FEBS Lett. 509(2), 263–266 (2001).
  • Bundy JG , IyerNG, GentileMSet al. Metabolic consequences of p300 gene deletion in human colon cancer cells. Cancer Res. 66(15), 7606–7614 (2006).
  • Turner WS , SeagleC, GalankoJAet al. Nuclear magnetic resonance footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells. 26(6), 1547–1555 (2008).
  • Jansen JFA , ShamblottMJ, van Zijl PCMet al. Stem cell profiling by nuclear magnetic resonance spectroscopy. Magn. Reson. Med. 56(3), 666–670 (2006).
  • Shi C , WangX, WuS, ZhuY, ChungLWK, MaoH. HRMAS 1H-NMR measured changes of the metabolite profile as mesenchymal stem cells differentiate to targeted fat cells in vitro: implications for non-invasive monitoring of stem cell differentiation in vivo. J. Tissue Eng. Regen. M. 2(8), 482–490 (2008).
  • Whitehead TL , Monzavi-KarbassiB, JousheghanyF, ArtaudC, ElbeinA, Kieber-EmmonsT. 1H-NMR metabolic markers of malignancy correlate with spontaneous metastases in a murine mammary tumor model. Int. J. Oncol. 27(1), 257–263 (2005).
  • Ferretti A , D’AscenzoS, KnijnAet al. Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: 1H NMR study. Br. J. Cancer86(7), 1180–1187 (2002).
  • Iorio E , MezzanzanicaD, AlbertiPet al. Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res. 65(20), 9369–9376 (2005)
  • Santini MT , RomanoR, RainaldiGet al. The relationship between 1H-NMR mobile lipid intensity and cholesterol in two human tumor multidrug resistance cell lines (MCF-7 and LoVo). Biochim. Biophys. Acta. 1531(1–2), 111–131 (2001).
  • Le-Moyec L , LegrandO, LarueVet al. Magnetic resonance spectroscopy of cellular lipid extracts from sensitive, resistant and reverting K562 cells and flow cytometry for investigating the P-glycoprotein function in resistance reversion. NMR Biomed. 13(2), 92–101 (2000).
  • Mannechez A , ReungpatthanaphongP, De Certaines JD, Leray G, Le Moyec L. Proton NMR visible mobile lipids signal in sensitive and multidrug-resistant K562 cells are modulated by rafts. Cancer Cell Int. 5(2), (2005).
  • Lee IJ , HomK, BaiG, ShapiroM. NMR metabolomic analysis of Caco-2 cell differentiation. J. Proteome Res. 8(8), 4104–4108 (2009).
  • Rosi A , GrandeS, LucianiAMet al. 1H MRS studies of signals from mobile lipids and from lipid metabolites: comparison of the behavior in cultured tumor cells and in spheroids. NMR Biomed. 17(2), 76–91 (2004).
  • Miccheli AT , MiccheliA, Di Clemente Ret al. NMR-based metabolic profiling of human hepatoma cells in relation to cell growth by culture media analysis. Biochim. Biophys. Acta1760(11), 1723–1731 (2006).
  • Khoo SHG , Al-RubeaiM. Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab. Eng. 11(3), 199–211 (2009).
  • Rosi A , LucianiAM, MatarreseP, AranciaG, VitiV, GuidoniL. 1H-MRS lipid signal modulation and morphological and ultrastructural changes related to tumor cell proliferation. Magn. Reson. Med. 42(2), 248–257 (1999).
  • Santini MT , RainaldiG, RomanoRet al. MG-63 human osteosarcoma cells grown in monolayer and as three-dimentional tumor spheroids present a different metabolic profile: a 1H NMR study. FEBS Lett. 557(1–3), 148–154 (2004).
  • Valverde D , QuinteroMR, CandiotaAP, BadiellaL, CabañasME, ArúsC. Analysis of the changes in the 1H NMR spectral pattern of perchloric acid extracts of C6 cells with growth. NMR Biomed. 19(2), 223–230 (2006).
  • Tiziani S , LodiA, KhanimFL, ViantMR, BunceCM, GünterUL. Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS One4(1) (2009).
  • Baykal AT , JainMR, LiH. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells. Metabolomics4(4), 347–356 (2008).
  • Jin Y , BrennanL. Effects of homocysteine on metabolic pathways in cultured astrocytes. Neurochem. Int. 52(8), 1410–1415 (2008).
  • Lamers RJ , WesselsEC, van de Sandt JJ. A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic fingerprinting. J. Nutr. 133(10), 3080–3084 (2003).
  • Griffin JL , PoleJCM, NicholsonJK, CarmichaelPL. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim. Biophys. Acta1619(2), 151–158 (2003).
  • Bollard ME , XuJ, PurcellWet al. Metabolic profiling of the effects of d-galactosamine in liver spheroids using 1H NMR and MAS-NMR spectroscopy. Chem. Res. Toxicol. 15(11), 1351–1359 (2002).
  • Chung Y-L , GriffithsJR. Using metabolomics to monitor anticancer drugs. In: Ernst Schering Foundation Symposium Proceedings – Oncogenes Meet Metabolism(Volume 4). Kroemer G, Mumberg D, Keun H, Riefke B, Steger-Hartmann T, Petersen K (Eds). Springer-Verlag, Berlin, Germany, 55–78 (2008).
  • Morvan D , DemidemA, PaponJ, MadelmontJC. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations. Magn. Reson. Med. 49(2), 241–248 (2003).
  • Loiseau D , MorvanD, ChevrollierAet al. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy. Mol. Carcinog. 48(8), 733–741 (2009).
  • Borel M , DegoulF, CommunalYet al. N-(4-iodophenyl)-N0-(2-chloroethyl)urea as a microtubule disrupter: in vitro and in vivo profiling of antitumoral activity on CT-26 murine colon carcinoma cell line cultured and grafted to mice. Br. J. Cancer96(11), 1684–1691 (2007).
  • Knijn A , BrisdelliF, FerrettiA, IorioE, MarcheggianiD, BozziA. Metabolic alterations in K562 cells exposed to taxol and tyrphostin AG957: 1H NMR and biochemical studies. Cell Biol. Int. 29(11), 890–897 (2005)
  • Mardor Y , KaplanO, SterinMet al. Noninvasive real-time monitoring of intracellular cancer cell metabolism and response to lonidamine treatment using diffusion weighted proton magnetic resonance spectroscopy. Cancer Res. 60(18), 5179–5186 (2000).
  • Lutz NW , FranksSE, FrankMH, PomerS, HullWE. Investigation of multidrug resistance in cultured human renal cell carcinoma cells by 31P-NMR spectroscopy and treatment survival assays. Magma18(3), 144–161 (2005).
  • Mancuso A , ZhuA, BeardsleyNJ, GlicksonJD, WehrliS, PickupS. Artificial tumor model suitable for monitoring 31P and 13C NMR spectroscopic changes during chemotherapy-induced apoptosis in human glioma cells. Magn. Reson. Med. 54(1), 67–78 (2005).
  • Milkevitch M , JeitnerTM, BeardsleyNJ, DelikatnyEJ. Lovastatin enhances phenylbutyrate-induced MR-visible glycerophosphocholine but not apoptosis in DU145 prostate cells. Biochim. Biophys. Acta1771(9), 1166–1176 (2007).
  • Morse DL , RaghunandN, SaradanganiPet al. Response of choline metabolites to docetaxel therapy is quantified in vivo by localized 31P MRS of human breast cancer xenografts and in vitro by high-resolution 31P NMR spectroscopy of cell extracts. Magn. Reson. Med. 58(2), 270–280 (2007).
  • Baloueche-Babari M , JacksonLE, Al-SaffarNMet al. Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol. Cancer Ther. 5(1), 187–196 (2006).
  • Al-Saffar NM , TroyH, Ramírez de Molina Aet al. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 66(1), 427–434 (2006).
  • Chung Y-L , TroyH, KristeleitRet al. Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of a novel histone deacetylase inhibitor, LAQ824, in human colon carcinoma cells and xenografts. Neoplasia10(4), 303–313 (2008).
  • Fan TW-M , BanduraLL, HigashiRM, LaneAN. Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells. Metabolomics1(4), 325–339 (2005).
  • Klawitter J , AndersenN, KlawitterJet al. Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study. Br. J. Cancer100(6), 923–931 (2009).
  • Kominsky DJ , KlawitterJ, BrownJLet al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR–ABL-positive cells. Clin. Cancer Res. 15(10), 3442–3450 (2009).
  • Bauer A , SchumannA, GilbertMet al. Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem. Phys. Lipids159(1), 21–29 (2009).
  • Zwingmannm C , LeibfrietzD, HazellAS. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intracellular trafficking using multinuclear NMR-spectroscopic analysis. J. Cereb. Blood Flow Metab. 23(6), 756–771 (2003).
  • Li W , SlominskiR, SlominskiAT. High-resolution magic angle spinning nuclear magnetic resonance analysis of metabolic changes in melanoma cells after induction of melanogenesis. Anal. Biochem. 386(2), 282–284 (2009).
  • Brennan L , HewageC, MalthouseJP, McClenaghanNH, FlattPR, NewsholmeP. Investigation of the effects of sulfonylurea exposure on pancreatic b cell metabolism. FEBS J. 273(22), 5160–5168 (2006).
  • Lutz NW , YahiN, FantiniJ, CozzonePJ. Perturbations of glucose metabolism associated with HIV infection in human intestinal epithelial cells: a multinuclear magnetic resonance spectroscopy study. AIDS11(2), 147–155 (1997).
  • Akhtar SN , SinghRK, JadegoudY, DholeTN, AyyagariA, Nagana-GowdaGA. in vitro1H NMR studies of RD human cell infection with echovirus 11. NMR Biomed. 20(4), 422–428 (2007).
  • Santini MT , RomanoR, RainaldiGet al. Temporal dynamics of 1H-NMR-visible metabolites during radiation-induced apoptosis in MG-63 human osteosarcoma spheroids. Radiat. Res. 166(5), 734–745 (2006).
  • Viola A , LutzNW, MarocC, ChabannonC, JulliardM, CozzonePJ. Metabolic effects of photodynamically-induced apoptosis in an erythroleukemic cell line. A 31P NMR spectroscopic study of Victoria-Blue-BO-sensitized TF-1 cells. Int. J. Cancer85(5), 733–739 (2000).
  • Santini MT , FerranteA, RomanoRet al. A 700MHz 1H-NMR study reveals apoptosis-like behaviour in human K562 erythroleukemic cells exposed to a 50Hz sinusoidal magnetic field. Int. J. Radiat. Biol. 81(2), 97–113 (2005).
  • Rainaldi G , RomanoR, IndovinaPet al. Metabolomics using 1H-NMR of apoptosis and necrosis in HL60 leukemia cells: differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiat. Res. 169(2), 170–180 (2008).
  • Al-Saffar NM , TitleyJC, RobertsonDet al. Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells. Br. J. Cancer86(6), 963–970 (2002).
  • Iorio E , Di Vito M, Spadaro Fet al. Triacsin C inhibits the formation of 1H NMR visible mobile lipids and lipids bodies in HuT 78 apoptotic cells. Biochim. Biophys. Acta1634(1–2), 1–14 (2003).
  • Lutz NW , TomeME, CozzonePJ. Early changes in glucose and phospholipid metabolism following apoptosis induction by IFN-γ/TNF-α in HT-29 cells. FEBS Lett. 544(1–3), 123–128 (2003).
  • Silvestre V , GoupryS, TrierweilerMet al. Determination of substrate and product concentrations in lactic acid bacterial fermentations by proton NMR using the ERETIC method. Anal. Chem. 73(8), 1862–1868 (2001).
  • Rantalainen M , CloarecO, BeckonertOet al. Statistically integrated metabonomic–proteomic studies on a human prostate cancer xenograft model in mice. J. Proteome Res. 5(10), 2642–2655 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.