416
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges in Applying Chemometrics to LC–MS-Based Global Metabolite Profile Data

Pages 805-819 | Published online: 07 Aug 2009

Bibliography

  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.29(11) , 1181–1189 (1999).
  • Nicholson JK , ConnellyJ, LindonJCet al. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1(2) , 153–161 (2002).
  • Fiehn O . Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol.48(1–2) , 155–171 (2002).
  • Nicholson JK , LindonJC. Systems biology: Metabonomics. Nature 23, 455(7216) , 1054–1056 (2008).
  • Rezzi S , MartinFP, KochharS. Defining personal nutrition and metabolic health through metabonomics. Ernst Schering Found. Symp. Proc. (4) , 251–264 (2007).
  • Holmes E , LooRL, StamlerJet al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453(7193) , 396–400 (2008).
  • Gieger C , GeistlingerL, AltmaierEet al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4(11) , e1000282 (2008).
  • Xu EY , SchaeferWH, XuQ. Metabolomics in pharmaceutical research and development: metabolites, mechanisms and pathways. Curr. Opin. Drug Discov. Devel.12(1) , 40–52 (2009).
  • Wishart DS . Applications of metabolomics in drug discovery and development. Drugs R D9(5) , 307–322 (2008).
  • Clarke CJ , HaseldenJN. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol.36(1) , 140–147 (2008).
  • Chen C , KrauszKW, IdleJRet al. Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J. Biol. Chem. 283(8) , 4543–4559 (2008).
  • Bollard ME , KeunHC, BeckonertOet al. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol. Appl. Pharmacol. 204(2) , 135–151 (2005).
  • Lindon JC , HolmesE, NicholsonJK. Metabonomics in pharmaceutical R&D. FEBS J.274(5) , 1140–1151 (2007).
  • Coen M , HolmesE, LindonJCet al. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 21(1) , 9–27 (2008).
  • Hinkelbein J , FeldmannRE Jr, Peterka A et al. Alterations in cerebral metabolomics and proteomic expression during sepsis. Curr. Neurovasc. Res. (4) , 280–288 (2007).
  • Bertini I , CalabròA, De Carli V et al. The metabonomic signature of celiac disease. J. Proteome Res.8(1) , 170–177 (2009).
  • Kaddurah-Daouk R , KrishnanKR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology34(1) , 173–186 (2009).
  • Rozen S , CudkowiczME, BogdanovMet al. Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1(2) , 101–108 (2005).
  • Odunsi K . Cancer diagnostics using 1H-NMR-based metabonomics. Ernst Schering Found. Symp. Proc.(4) , 205–226 (2007).
  • Gowda GA , ZhangS, GuHet al. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 8(5) , 617–633 (2008).
  • Viant MR . Recent developments in environmental metabolomics. Mol Biosyst.4(10) , 980–986 (2008).
  • Viant MR , BeardenDW, BundyJGet al. International NMR-based environmental metabolomics intercomparison exercise. Environ. Sci. Technol. 43(1) , 219–225 (2009).
  • Simpson MJ , McKelvieJR. Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem.394(1) , 137–149 (2009).
  • Roessner U , LuedemannA, BrustDet al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1) , 11–29 (2001).
  • Hoekenga OA . Using metabolomics to estimate unintended effects in transgenic crop plants: problems, promises, and opportunities. J. Biomol. Tech.19(3) , 159–166 (2008).
  • Allwood JW , EllisDI, GoodacreR. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol. Plant.132(2) , 117–135 (2008).
  • Dixon RA , GangDR, CharltonAJet al. Applications of metabolomics in agriculture. J. Agric. Food Chem. 54(24) , 8984–8994 (2006).
  • Garcia DE , BaidooEE, BenkePIet al. Separation and mass spectrometry in microbial Metabolomics. Curr. Opin. Microbiol. 11(3) , 233–239 (2008).
  • Larsen TO , SmedsgaardJ, NielsenKFet al. Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat. Prod. Rep. 22(6) , 672–695 (2005).
  • Mashego MR , RumboldK, De Mey M et al. Microbial metabolomics: past, present and future methodologies. Biotechnol. Lett.29(1) , 1–16 (2007).
  • Fiehn O , KopkaJ, DörmannPet al. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18(11) , 1157–1161(2000).
  • Kell DB . Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol.7(3) , 296–307 (2004).
  • Fernie AR , TretheweyRN, KrotzkyAJ, WillmitzerL. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell. Biol.5(9) , 763–769 (2004).
  • Villas-Bôas SG , RasmussenS, LaneGA. Metabolomics or metabolite profiles? Trends Biotechnol.23(8) , 385–386 (2005).
  • Goodacre R , VaidyanathanS, DunnWBet al. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22(5) , 245–252 (2004).
  • Dunn WB , BaileyNJ, JohnsonHE. Measuring the metabolome: current analytical technologies. Analyst130(5) , 606–625 (2005).
  • Lindon JC , HolmesE, NicholsonJK. Metabonomics in pharmaceutical R&D. FEBS J.274(5) , 1140–51 (2007).
  • Pan Z , RafteryD. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics Anal. Bioanal. Chem.387(2) , 525–527 (2007).
  • Lenz EM , WilsonID. Analytical strategies in metabonomics. J. Proteome Res.6(2) , 443–458 (2007).
  • Coen M , HolmesE, LindonJCet al. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 21(1) , 9–27 (2008).
  • Lenz EM , BrightJ, WilsonIDet al. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J. Pharm. Biomed. Anal. 36(4) , 841–849 (2004).
  • Katajamaa M , OresicM. Data processing for mass spectrometry-based metabolomics J. Chromatogr. A.1158(1–2) , 318–328 (2007).
  • Sumner LW , Urbanczyk-WochniakE, BroecklingCD. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol.406 , 409–436 (2007).
  • Robinson MD , De Souza DP, Keen WW et al. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography–mass spectrometry experiments. BMC Bioinformatics8 , 419 (2007).
  • Adourian A , JenningsE, BalasubramanianRet al. Correlation network analysis for data integration and biomarker selection. Mol. Biosyst. 4(3) , 249–259 (2008).
  • Xu Y , GongF, DixonSJet al. Application of dissimilarity indices, principal coordinates analysis, and rank tests to peak tables in metabolomics of the gas chromatography/mass spectrometry of human sweat. Anal. Chem. 79(15) , 5633–5641 (2007).
  • Plumb RS , StumpfCL, GrangerJHet al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun. Mass Spectrom. 17(23) , 2632–2638. (2003).
  • Dettmer K , AronovPA, HammockBD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev.26(1) , 51–78 (2007).
  • Idborg H , EdlundPO, JacobssonSP. Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data. Rapid Commun. Mass Spectrom.18(9) , 944–954 (2004).
  • Wilson ID , PlumbR, GrangerJet al. HPLC–MS-based methods for the study of metabonomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 817(1) , 67–76 (2005).
  • Want EJ , O‘MailleG, SmithCAet al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78(3) , 743–52 (2006).
  • Werner E , HeilierJF, DucruixCet al. Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2) , 143–63 (2008).
  • Want EJ , NordströmA, MoritaHet al. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res. 6(2) , 459–468 (2007).
  • Dettmer K , AronovPA, HammockBD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev.26(1) , 51–78 (2007).
  • Dunn WB . Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys. Biol.5(1) , 11001 (2008).
  • Nováková L , SolichováD, SolichP. Advantages of ultra performance liquid chromatography over high-performance liquid chromatography: comparison of different analytical approaches during analysis of diclofenac gel. J. Sep. Sci.29(16) , 2433–2443 (2006).
  • Plumb R , Castro-PerezJ, GrangerJet al. Ultra-performance liquid chromatography coupled to quadrupole–orthogonal time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 18 , 2331–2337 (2004).
  • Zelena E , DunnWB, BroadhurstDet al. Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Anal. Chem. 81(4) , 1357–1364 (2009).
  • Gika HG , MacphersonE, TheodoridisGAet al. Evaluation of the repeatability of ultra-performance liquid chromatography–TOF–MS for global metabolic profiling of human urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2) , 299–305 (2008).
  • Baker JM , HawkinsND, WardJL. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol. J.4 , 381–392 (2006).
  • van der Greef J , DavidovE, VerheijERet al. Metabolic Profiling: its Role in Biomarker Discovery and Gene Function Analysis Harrigan GG, Goodacre R (Eds). Kluwer Academic Publishers, MA, USA (2003).
  • Broadhurst DI , KellDB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics2(4) , 171–196 (2006).
  • Katz JE , DumlaoDS, ClarkeSet al. A new technique (COMSPARI) to facilitate the identification of minor compounds in complex mixtures by GC–MS and LC–MS: tools for the visualization of matched datasets. J. Am. Soc. Mass Spectrom. 15(4) , 580–584 (2004).
  • Baran R , KochiH, SaitoNet al. MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 13(7) , 530 (2006).
  • Broeckling CD , ReddyIR, DuranALet al. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics Anal. Chem. 78(13) , 4334–4341 (2006).
  • Duran AL , YangJ, WangLet al. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19(17) , 2283–2293 (2003).
  • Katajamaa M , OresicM. Processing methods for differential analysis of LC–MS profile data. BMC Bioinformatics6 , 179 (2005).
  • Katajamaa M , MiettinenJ, OresicM. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics22(5) , 634–636 (2006).
  • Kind T , TolstikovV, FiehnOet al. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 363(2) , 185–195 (2007).
  • Sturm M , BertschA, GröplCet al. OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 26(9) , 163 (2008).
  • Smith CA , WantEJ, O‘MailleGet al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78(3) , 779–787 (2006).
  • Benton HP , WongDM, TraugerSAet al. XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal. Chem. 80(16) , 6382–6389 (2008).
  • Tautenhahn R , BottcherC, NeumannS. Highly sensitive feature detection for high resolution LC–MS. BMC Bioinformatics9(1) , 504 (2008).
  • Dunn WB , BroadhurstD, BrownMet al. Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2) , 288–298 (2008).
  • Lange E , TautenhahnR, NeumannSet al. Critical assessment of alignment procedures for LC–MS proteomics and metabolomics measurements. BMC Bioinformatics 15(9) , 375 (2008).
  • Stefansson M , SjobergPJR, MarkidesKE. Regulation of multimer formation in electrospray mass spectrometry. Anal. Chem.68 , 1792–1797 (1996).
  • Jemal M , AlmondRB, TeitzDS. Quantitative bioanalysis utilizing high-performance liquid chromatography electrospray mass spectrometry via selected ion monitoring of the sodium ion adduct [M+Na]+. Rapid Commun. Mass Spectrom.11 , 1083–1088 (1997).
  • Ding J , AndereggRJ. Specific and nonspecific dimer formation in the electrospray ionization mass spectrometry of oligonucleotides. J. Am. Soc. Mass Spectrom.6 , 159–(1995).
  • Jiang H , SomogyiA, TimmermannBNet al. Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols. Rapid Commun. Mass Spectrom. 20 , 3089–3100 (2006).
  • Milliet A , RemppM, SozziG. Formation of a stable ‘proton-bridged dimer‘ by decomposition of CH3CH(OC2H5)CH(OC2H5)CH3+ in a mass spectrometer. J. Mass Spectrom.31 , 749 (1996).
  • James PF , PeruginiMA, O‘HairRA. Sources of artefacts in the electrospray ionization mass spectra of saturated diacylglycerophosphocholines: from condensed phase hydrolysis reactions through to gas phase intercluster reactions. J. Am. Soc. Mass Spectrom.17(3) , 384–394 (2006).
  • Tautenhahn R , BottcherC, NeumannS. Annotation of LC/ESI-MS mass signals. In: Bioinformatics Research and Development. Hochreiter S, Wagner R (Eds). Springer, Berlin, Germany, 371 (2007).
  • Nordström A , O‘MailleG, QinCet al. Nonlinear data alignment for UPLC–MS and HPLC–MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem. 78(10) , 3289–3295 (2006).
  • Yu K , LittleD, PlumbRet al. High-throughput quantification for a drug mixture in rat plasma – a comparison of ultra performance liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20(4) , 544–552 (2006).
  • Frenzel T , MillerA, EngelKH. A methodology for automated comparative analysis of metabolite profiling data. Eur. Food Res. Technol.216 , 1438–2377 (2004).
  • Parab GS , RaoR, LakshminarayananSet al. Data-driven optimization of metabolomics methods using rat liver samples. Anal. Chem. 81(4) , 1315–1323 (2009).
  • Bijlsma S , BobeldijkI, VerheijERet al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78(2) , 567–574 (2006).
  • Lutz NW , ViolaA, MalikovaIet al. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS ONE 2(7) , e595 (2007).
  • Ruperez FJ , Garcia-MartinezD, BaenaB. Dunaliella salina extract effect on diabetic rats: metabolic fingerprinting and target metabolite analysis. J. Pharm. Biomed. Anal.49(3) , 786–792 (2009).
  • Brereton RG . Consequences of sample size, variable selection, model validation and optimisation for predicting classification ability from analytical data. Trends Analyt. Chem.25 , 1103–1111 (2006).
  • Scholz M , SelbigJ. Visualization and analysis of molecular data. Methods Mol. Biol.358 , 87–104 (2007).
  • Eriksson L , AnttiH, GottfriesJet al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm). Anal. Bioanal. Chem. 380(3) , 419–429 (2004).
  • Trygg J , HolmesE, LundstedtT. Chemometrics in metabonomics. J. Proteome Res.6(2) , 469–479 (2007).
  • Vogt W , NagelD. Cluster analysis in diagnosis. Clin. Chem.38(2) , 182–198 (1992).
  • Crockford DJ , HolmesE, LindonJCet al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC–MS data sets: application in metabonomic toxicology studies. Anal. Chem. 78(2) , 363–371 (2006).
  • van der Greef J , SmildeAK. Symbiosis of chemometrics and metabolomics: past, present, and future. J. Chemometrics19 , 376 (2005).
  • Yeung KY , RuzzoWL. Principal component analysis for clustering gene expression data. Bioinformatics17(9) , 763–774 (2001).
  • Jolliffe IT . Principal Component Analysis (2nd Edition). Springer, NY, USA (2002).
  • Wang Y , TaoY, LinYet al. Integrated analysis of serum and liver metabonome in liver transplanted rats by gas chromatography coupled with mass spectrometry. Anal. Chim. Acta 633(1) , 65–70 (2009).
  • Murdoch TB , FuH, MacFarlaneSet al. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal. Chem. 80(14) , 5524–5531 (2008).
  • Scholz M , GatzekS, SterlingAet al. Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20(15) , 2447–2454 (2004).
  • Jonsson P , JohanssonES, WuolikainenAet al. Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC–MS data – a potential tool for multi-parametric diagnosis. J. Proteome Res. 5(6) , 1407–1414 (2006).
  • De Souza DP , SaundersEC, McConvilleMJet al. Progressive peak clustering in GC–MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22(11) , 1391–1396 (2006).
  • Tikunov Y , LommenA, de Vos CH et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol.139(3) , 1125–1137 (2005).
  • Burton L , IvosevG, TateSet al. Instrumental and experimental effects in LC–MS-based metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2) , 227–235 (2008).
  • Ivosev G , BurtonL, BonnerR. Dimensionality reduction and visualization in principal component analysis. Anal. Chem.80(13) , 4933–4944 (2008).
  • Hyvärinen A , OjaE. Independent component analysis: algorithms and applications. Neural Netw.13(4–5) , 411–430 (2000).
  • Scholz M , SelbigJ. Visualization and analysis of molecular data. Methods Mol. Biol.358 , 87–104 (2007).
  • Lutz U , LutzRW, LutzWK. Metabolic profiling of glucuronides in human urine by LC–MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal. Chem.78(13) , 4564–44571 (2006).
  • Barker M , RayensW. Partial least squares for discrimination. J. Chemometrics17(3) , 166–173 (2003).
  • Martens H , NaesT. Multivariate Calibration. John Wiley & Sons Inc., NY, USA (1989).
  • Malinowski ER . Factor Analysis in Chemistry. Wiley-Interscience, NY, USA (1991).
  • Bylesjo M , RantalainenM, CloarecOet al. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemometrics 20(8–10) , 341–351 (2006).
  • Trygg J . O2-PLS for qualitative and quantitative analysis in multivariate calibration. J. Chemometrics16(6) 283–293 (2002).
  • Trygg J , WoldS. Orthogonal projections to latent structures (O-PLS). J. Chemometrics16(3) , 119–128 (2002).
  • Brereton RG . Consequences of sample size, variable selection, and model validation and optimisation, for predicting classification ability from analytical data Trends Anal. Chem.25 , 1103–1111 (2006).
  • Anderssen E , DyrstadK, WestadFet al. Reducing over-optimism in variable selection by cross-model validation. Chemometrics Intelligent Lab. Sys. 84(1–2) , 69–74 (2006).
  • Eriksson L , JohanssonE, Kettaneh-WoldNet al. Multi- and Megavariate Data Analysis: Principles and Applications. Umetrics Academy, Umea, Sweden (2001).
  • Smith CA , O‘MailleG, WantEJet al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27(6) , 747–751 (2005).
  • Weckwerth W , MorgenthalK. Metabolomics: from pattern recognition to biological interpretation. Drug Discov. Today10(22) , 1551–1558 (2005).
  • Saghatelian A , TraugerSA, WantEJet al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43(45) , 14332–14339 (2004).
  • Cho JY , KangDW, MaXet al. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation. J. Lipid Res. 50(5) , 924–937 (2009).
  • Böcker S , RascheF. Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics24(16) , i49–i55 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.