218
Views
0
CrossRef citations to date
0
Altmetric
Review

NMR Spectroscopy for Discovery and Quantitation of Biomarkers of Disease in Human Bile

Pages 1877-1890 | Published online: 30 Aug 2011

Bibliography

  • Asiago V , AlvaradoL, ShanaiahNet al. Early detection of recurrent breast cancer using metabolite profiling, Cancer Res . 70(21), 8309–8318 (2010).
  • Davis VW , BatheOF, SchillerDE, SlupskyCM, SawyerMB. Metabolomics and surgical oncology: potential role for small molecule biomarkers. J. Surg Oncol. 103(5), 451–459 (2011).
  • Fiehn O . Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48(1–2), 155–171 (2002).
  • Gerszten RE , WangTJ. The search for new cardiovascular biomarkers. Nature451(7181), 949–952 (2008).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Nagana Gowda GA , ZhangS, GuH, AsiagoV, ShanaiahN, RafteryD. Metabolomics-based methods for early disease diagnostics. Exp. Rev. Mol. Diagn. 8(5), 617–633 (2008).
  • Serkova NJ , NiemannCU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Exp. Rev. Mol. Diagn. 6(5), 717–731 (2006).
  • Sreekumar A , PoissonLM, RajendiranTMet al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature457(7231), 910–914 (2009).
  • Raftery D , NaganaGowda GA. An approaching new wave of multicomponent biomarker diagnostics? J. Urol. 179(6), 2089–2090 (2008).
  • Wishart DS , KnoxC, GuoACet al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37(Database issue), D603–D610 (2009).
  • Psychogios N , HauDD, PengJet al. The human serum metabolome. PLoS One6(2), e16957 (2011).
  • Holmes E , WilsonID, NicholsonJK. Metabolic phenotyping in health and disease. Cell134(5), 714–717 (2008).
  • Burns MA , HeW, WuCL, ChengLL. Quantitative pathology in tissue MR spectroscopy based human prostate metabolomics. Technol. Cancer. Res. Treat. 3(6), 591–598 (2004).
  • Denkert C , BudcziesJ, KindTet al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 66, 10795–10804 (2006).
  • Nagana Gowda GA . Human bile as a rich source of biomarkers for hepatopancreatobiliary cancers. Biomarkers Med. 4(2). 299–314 (2010).
  • Nagana Gowda GA , ShanaiahN, CooperA, MaluccioM, RafteryD. Visualization of bile homeostasis using 1H NMR spectroscopy as a route for assessing liver cancer. Lipids44, 27–35 (2009).
  • Sjövall J . Fifty years with bile acids and steroids in health and disease. Lipids39(8), 703–722(2004).
  • Hofmann AF . The continuing importance of bile acids in liver and intestinal diseases. Arch. Intern. Med. 159, 2647–2658 (1999).
  • Hofmann AF . Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology49(5), 1403–1418 (2009).
  • Nagana Gowda GA , IjareOB, ShanaiahN, BezabehT. Combining NMR spectroscopy and mass spectrometry in biomarker discovery. Biomark. Med. 3(3), 307–322 (2009).
  • Griffitts J , TesiramYA, ReidGE, SaundersD, FloydRA, TownerRA. In vivo magnetic resonance spectroscopy (MRS) assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model. J. Lipid Res. 50(4), 611–622 (2009).
  • Kaplan O , KushnirT, AskenazyN, KnubovetsT, NavonG. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer. Cancer Res. 57(8), 1452–1459 (1997).
  • Nagana Gowda GA . Opportunities and challenges in NMR spectroscopy for early diagnostics of hepatobiliary diseases (Chapter 5). In:Future Directions of Magnetic Resonance. Springer Verlag (2009).
  • Khan SA , CoxIJ, HamiltonG, ThomasHC, Taylor-RobinsonSD. In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int. 25(2), 273–281 (2005).
  • Ijare OB , SmithICP, MohajeriS, BezabehT. Magnetic Resonance spectroscopy (MRS) of bile in the diagnosis of hepatopancreaticobiliary diseases: past, present and future. In:Future Directions of Magnetic Resonance. Springer Verlag (2009).
  • Mohajeri S , BezabehT, KingSBet al. In vivo 1H MRS of human gallbladder bile using an optimized 16-channel phased array at 3T. Proc. Int. Soc. Magn. Reson. Med. 19, 870 (2011).
  • Bloch CA , WatkinsJB. Determination of conjugated bile acids in human bile and duodenal fluid by reverse phase high-performance liquid chromatography. J. Lipid Res. 19, 510–513 (1978).
  • Budai K , JavittNB. Bile acid analysis in biological fluids: a novel approach. J. Lipid Res. 38, 1906–1912 (1997).
  • Guldutuna S , YouT, KurtsW, LeuschnerU. High-performance liquid chromatographic determination of free and conjugated bile acids in serum, liver biopsies, bile, gastric juice and feces by flouorescene labeling. Clin. Chim. Acta214, 195–207 (1993).
  • Perwaiz S , TuchweberB, MignaultD, GilatT, YousefIM. Determination of bile acids in biological fluids by liquid chromatography–electrospray tandem mass spectrometry. J. Lipid Res. 42, 114–119 (2001).
  • Tietz PS , ThistleJL, MillerLJ, LaRussoNF. Development and validation of a method for measuring the glycine and taurine conjugates of bile acids in bile by high-performance liquid chromatography. J. Chromatogr. 336(2), 249–257 (1984).
  • Wildgrube HJ , StockhausenH, PetriJ, FusselU, LauerH. Naturally occurring conjugated bile acids, measured by high performance liquid chromatography, in human, dog, and rabbit bile. J. Chromatogr. 353, 207–213 (1986).
  • Sequeira SS , ParkesHJ, EllulJPM, MurphyGM. In vitro determination by 1H-NMR studies that bile with shorter nucleation times contain cholesterol–enriched vesicles. Biochim. Biophys. Acta1256, 360–366 (1995).
  • Jones ML , ChenH, OuyangW, MetzT, PrakashS. Methods for bile acid determination by high performance liquid chromatography. J. Med. Sci. 23, 277–280 (2003).
  • Perwaiz S , TuchweberB, MignaultD, GilatT, YousefIM. Determination of bile acids in biological fluids by liquid chromatography–electrospray tandem mass spectrometry. J. Lipid. Res. 42(1), 114–119 (2001).
  • Mim D , HerculesD. Quantification of bile acids directly from plasma by MALDI-TOF-MS. Anal. Bioanal. Chem. 378, 1322–1326 (2004).
  • Dominguez C , KreuzerCS, BornetO, KerfelecB, ChapusC, GuerlesquinF. Interactions of bile salt micelles and colipase studied through intermolecular nOes. FEBS Letters. 482, 109–112 (2000).
  • Maili Liu R , FarrantD, LindonJC, NicholsonJK. Two-dimensional 1H-1H and 13C-1H maximum-quantum correlation NMR spectroscopy with application to the assignment of the NMR spectra of the bile salt sodium taurocholate. Magn. Reson. Chem. 33, 212–219 (1995).
  • Leibfritz D , RobertsJD. Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of cholic acids and hydrocarbons included in sodium desoxycholate solutions. J. Am. Chem. Soc. 95, 4996–5003 (1973).
  • Small DM , PenkellSA, ChapmanD. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta. 176, 178–189 (1969).
  • Waterhous DV , BernesS, MuccioDD. Nuclear magnetic resonance spectroscopy of bile acids. Development of two-dimensional NMR methods for the elucidation of proton resonance assignments for five common hydroxylated bile acids, and their parent bile acid, 5β-cholanoic acid. J. Lipid Res. 26, 1068–1078 (1985).
  • Bernes S , GeckleJM. High resolution nuclear magnetic resonance spectroscopy of bile salts: individual proton assignments for sodium cholate in aqueous solution at 400MHz. J. Lipid Res. 23, 161–170 (1982).
  • Campredon M , QuiroaA, ThevandA, AlloucheA, PouzardG. NMR studies of bile acid salts: 2D NMR studies of aqueous and methanolic solutions of sodium cholate and deoxycholate. Magn. Reson. Chem. 24, 624–629 (1986).
  • Ijare OB , SomashekarBS, JadegoudY, Nagana Gowda GA. 1H and 13C NMR Characterization and stereochemical assignments of bile acids in aqueous media. Lipids40, 1031–1041 (2005).
  • Nagana Gowda GA , IjareOB, SomashekarBS, SharmaA, KapoorVK, KhetrapalCL. Single step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids41, 591–603 (2006).
  • Ishikawa H , NakashimaT, InabaKet al. Proton magnetic resonance assay of total and taurine conjugated bile acids in bile. J. Lipid Res. 40, 1920–1924(1999).
  • Ellul JPM , MurphyGM, ParkesHG, SlapaRZ, DowlingRH. Nuclear magnetic resonance spectroscopy to determine the micellar cholesterol in human bile. FEBS Lett. 300, 30–32 (1992).
  • Little TE , LeeSP, MadaniH, KalerEW, ChinnK. Interconversions of lipid aggregates in rat and model bile. Am. J. Physiol. (Gaastrointest. Liver. Physiol. 23), 260, G70–G79 (1991).
  • Donovan JM , JacksonAA. Accurate separation of biliary aggregates requires the correct intermixed micellar/intervesicular bile salt concentration. Hepatology27, 641–648 (1998).
  • Srivastava M , JadegoudY, Nagana Gowda GA, Sharma A, Kapoor VK, Khetrapal CL. An accurate method for cholesterol analysis in bile. Anal. Letts. 38, 2135–2141 (2005).
  • Nagana Gowda GA , SomashekarBS, IjareOB, SharmaA, KapoorVK, KhetrapalCL. One step analysis of major bile metabolites in human bile using 1H NMR spectroscopy. Lipids41, 577–589 (2006).
  • Ijare OB , SomashekarBS, Nagana Gowda GAet al. Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR spectroscopy. Magn. Reson. Med. 53(6), 1441–1446 (2005).
  • Wildgrube HJ , StockhausenH, PetriJ, FüsselU, LauerH. Naturally occurring conjugated bile acids, measured by high-performance liquid chromatography, in human, dog, and rabbit bile. J. Chromatogr. 353, 207–213 (1986).
  • Ijare OB , BezabehT, AlbiinNet al. Simultaneous quantification of glycine- and taurine-conjugated bile acids, total bile acids, and choline containing phospholipids in human bile using 1H NMR spectroscopy. J. Pharm. Biomed. Anal. 53(3), 667–673 (2010).
  • Duarte IF , Legido-QuigleyC, ParkerDAet al. Identification of metabolites in human hepatic bile using 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. Mol. Biosyst. 5(2), 180–190. (2009).
  • Blonski W , ReddyKR. Hepatitis C virus infection and hepatocellular carcinoma. Clin. Liver. Dis. 12(3), 661–674 (2008).
  • Cox IJ , SharifA, CobboldJF, ThomasHC, Taylor-RobinsonSD. Current and future applications of in vitro magnetic resonance spectroscopy in hepatobiliary disease. World J. Gastroenterol. 12(30), 4773–4783 (2006).
  • Khan SA , CoxIJ, ThillainayagamAV, BansiDS, ThomasHC, Taylor-RobinsonSD. Proton and phosphorus-31 nuclear magnetic resonance spectroscopy of human bile in hepatopancreaticobiliary cancer. Eur. J. Gastroenterol. Hepatol. 17(7), 733–738 (2005).
  • Nishijima T , NishinaM, FujiwaraK. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Jpn. J. Clin. Oncol. 27(1), 13–17 (1997).
  • Cox IJ , BellJD, PedenCJet al. In vivo and in vitro31P magnetic resonance spectroscopy of focal hepatic malignancies. NMR Biomed. 5(3), 114–120 (1992).
  • Cox IJ , MenonDK, SargentoniJet al. Phosphorus-31 magnetic resonance spectroscopy of the human liver using chemical shift imaging techniques. J. Hepatol. 14(2–3), 265–275 (1992).
  • Francis IR , ChenevertTL, GubinBet al. Malignant hepatic tumors: P-31 MR spectroscopy with one-dimensional chemical shift imaging. Radiology180(2), 341–344 (1991).
  • Albiin N , SmithIC, ArneloUet al. Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis. Acta Radiol. 49(8), 855–862 (2008).
  • Park JY , ParkBK, KoJS, BangS, SongSY, ChungJB. Bile acid analysis in biliary tract cancer. Yonsei Med. J. 47(6), 817–825 (2006).
  • Bezabeh T , IjareOB, AlbiinN, ArneloU, LindbergB, SmithIC. Detection and quantification of d-glucuronic acid in human bile using 1H NMR spectroscopy: relevance to the diagnosis of pancreatic cancer. Magn. Reson. Mater. Phy. 22, 267–275 (2009).
  • Ijare OB , BezabehT, AlbiinNet al. Absence of glycochenodeoxycholic acid (GCDCA) in human bile is an indication of cholestasis: a 1H MRS study. NMR Biomed. 22(5), 471–479(2009).
  • Bala L , TripathiP, BhattGet al. 1H and 31P NMR studies indicate reduced bile constituents in patients with biliary obstruction and infection. NMR Biomed. 22(2), 220–228 (2009).
  • Melendez HV , AhmadiD, ParkesHG, RelaM, MurphyG, HeatonN. Proton transplantation. Nuclear magnetic resonance analysis of hepatic bile from donors and recipients in human liver transplantation. Transplantation72(5), 855–860 (2001).
  • Paczkowska A , ToczyowskaB, NyckowskiP. High-resolution 1H nuclear magnetic resonancespectroscopy analysis of bile samples obtained from a patient after orthotopic liver transplantation: new perspectives. Transplant. Proc. 35(6), 2278–2280 (2003).
  • Nagana Gowda GA , ShanaiahN, CooperA, MaluccioM, RafteryD. Bile acids conjugation in human bile is not random: new insights from 1H NMR spectroscopy at 800 MHz. Lipids44(6), 527–535 (2009).
  • Shanaiah N , DesilvaA, Nagana Gowda GA, Raftery MA, Hainline BE, Raftery D. Metabolite class selection of amino acids in body fluids using chemical derivatization and their enhanced 13C NMR. Proc. Natl Acad. Sci. USA104(28), 11540–11544 (2007).
  • Ye T , MoH, ShanaiahN, Nagana Gowda GA, Zhang S, Raftery D. Chemoselective 15N tag for sensitive and high-resolution nuclear magnetic resonance profiling of the carboxyl-containing metabolome. Anal. Chem. 81(12), 4882–4888 (2009).
  • Ye T , ZhangS, MoH, TayyariF, Nagana Gowda GA, Raftery D. 13C-formylation for improved NMR profiling of amino metabolites in biofluids. Anal. Chem. 82(6), 2303–2309 (2010).
  • Nagana Gowda GA , TayyariF, YeTet al. Quantitative analysis of blood plasma metabolites using isotope enhanced NMR methods. Anal. Chem. 82(21), 8983–8990 (2010).
  • Prescot AP , CollinsDJ, LeachMO, Dzik-JuraszAS. Human gallbladder bile: noninvasive investigation in vivo with single-voxel 1H MR spectroscopy. Radiology229(2), 587–592 (2003).
  • Künnecke B , BrunsA, von Kienlin M. Non-invasive analysis of gallbladder bile composition in cynomolgus monkeys using in vivo1H magnetic resonance spectroscopy. Biochim. Biophys. Acta1771(4), 544–549 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.