517
Views
1
CrossRef citations to date
0
Altmetric
Review

Integration of Metabolomics in Heart Disease and Diabetes Research: Current Achievements and Future Outlook

, , &
Pages 2205-2222 | Published online: 10 Oct 2011

Bibliography

  • Dunn WB , BroadhurstDI, AthertonHJ, GoodacreR, GriffinJL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40(1), 387–426 (2011).
  • Oliver SG , WinsonMK, KellDB, BaganzF. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16(9), 373–378 (1998).
  • Tweeddale H , Notley-McrobbL, FerenciT. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J. Bacteriol. 180(19), 5109–5116 (1998).
  • Fiehn O , KopkaJ, DormannP, AltmannT, TretheweyRN, WillmitzerL. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18(11), 1157–1161 (2000).
  • Roessner U , WagnerC, KopkaJ, TretheweyRN, WillmitzerL. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23(1), 131–142 (2000).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Pauling L , RobinsonAB, TeranishR, CaryP. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl Acad. Sci. USA68(10), 2374 (1971).
  • Horning EC . Use of combined gas-liquid chromatography and mass Spectrometry for clinical problems. Clin. Chem. 14(8), 777 (1968).
  • Sellick CA , KnightD, CroxfordASet al. Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells – matching extraction approaches to cell type and metabolite targets. Metabolomics6, 427–438 (2010).
  • Kell DB , OliverSG. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays26(1), 99–105 (2004).
  • Brown M , DunnWB, EllisDIet al. A metabolome pipeline: from concept to data to knowledge. Metabolomics1(1), 39–51 (2005).
  • Broadhurst DI , KellDB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics2(4), 171–196 (2006).
  • Ellis DI , GoodacreR. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst131(8), 875–885 (2006).
  • Dettmer K , AronovPA, HammockBD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26(1), 51–78 (2007).
  • Want EJ , WilsonID, GikaHet al. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc. 5(6), 1005–1018 (2010).
  • Beckonert O , CoenM, KeunHCet al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 5(6), 1019–1032 (2010).
  • Beckonert O , KeunHC, EbbelsTMDet al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2(11), 2692–2703 (2007).
  • Begley P , Francis-McintyreS, DunnWBet al. Development and performance of a gas chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal. Chem. 81(16), 7038–7046 (2009).
  • Zelena E , DunnWB, BroadhurstDet al. Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Anal. Chem. 81(4), 1357–1364 (2009).
  • Dunn WB , BroadhurstD, BegleyPet al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6(7), 1060–1083 (2011).
  • Gika HG , MacphersonE, TheodoridisGA, WilsonID. Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J. Chromat. B871(2), 299–305 (2008).
  • Van Der Kloet FM , BobeldijkI, VerheijER, JellemaRH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J. Proteome Res. 8(11), 5132–5141 (2009).
  • Madsen R , LundstedtT, TryggJ. Chemometrics in metabolomics – a review in human disease diagnosis. Anal. Chim. Acta659(1–2), 23–33 (2010).
  • Wishart DS , KnoxC, GuoACet al. HMDB. a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).
  • Dunn WB , BroadhurstDI, DeepakSMet al. Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics3, 413–426 (2007).
  • Nikolaidou T , MamasM, OceandyD, NeysesL. Biological action of α-ketoglutarate in the heart and kidney – a metabolite identified through a metabolomic search in patients with heart failure. Eur. J. Heart Failure (Suppl. 9), S268 (2010).
  • Wild S , RoglicG, GreenA, SicreeR, KingH. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care27(5), 1047–1053 (2004).
  • Gu K , CowieCC, HarrisMI. Mortality in adults with and without diabetes in a national cohort of the US population, 1971–1993. Diabetes Care21(7), 1138–1145 (1998).
  • Deaton C , MamasMA, RutterMKet al. Glucose and insulin abnormalities in patients with heart failure. Eur. J. Cardiovasc. Nursing10(2), 75–87 (2011).
  • Brun E , NelsonRG, BennettPHet al. Diabetes duration and cause-specific mortality in the Verona Diabetes Study. Diabetes Care23(8), 1119–1123 (2000).
  • Morrish NJ , WangSL, StevensLK, FullerJH, KeenH. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia44(Suppl. 2), S14–S21 (2001).
  • Marso SP , HiattWR. Peripheral arterial disease in patients with diabetes. J. Am. Col. Cardiol. 47(5), 921–929 (2006).
  • Lewis GD , AsnaniA, GersztenRE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J. Am. Col. Cardiol. 52(2), 117–123 (2008).
  • Barderas MG , LabordeCM, PosadaMet al. Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J. Biomed. Biotechnol. 790132 (2011).
  • El Azzouzi H , De Windt LJ. Heart spotting. Basic Res. Cardiol. 103(3), 228–231 (2008).
  • Goonewardena SN , PrevetteLE, DesaiAA. Metabolomics and atherosclerosis. Curr. Atheroscl. Rep. 12(4), 267–272 (2010).
  • Samuel JL , SchaubMC, ZauggM, MamasM, DunnWB, SwynghedauwB. Genomics in cardiac metabolism. Cardiovasc. Res. 79(2), 218–227 (2008).
  • Waterman CL , Kian-KaiC, GriffinJL. Metabolomic strategies to study lipotoxicity in cardiovascular disease. Biochim. Biophys. Acta1801(3), 230–234 (2010).
  • Wheelock CE , WheelockAM, KawashimaSet al. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol. Biosyst. 5(6), 588–602 (2009).
  • Biomarkers Definitions Working Group: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharm. Ther. 69(3), 89–95 (2001).
  • Mamas M , DunnWB, NeysesL, GoodacreR. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85(1), 5–17 (2011).
  • Wang TJ , LarsonMG, VasanRSet al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4), 448–U483 (2011).
  • Krebs M , KrssakM, BernroiderEet al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes51(3), 599–605 (2002).
  • Patti ME , KahnCR. The insulin receptor – a critical link in glucose homeostasis and insulin action. J. Basic Clin. Physiol. Pharmacol. 9(2–4), 89–109 (1998).
  • Orešič M , SimellS, Sysi-AhoMet al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to Type 1 diabetes. J. Exp. Med. 205(13), 2975–2984 (2008).
  • Shaham O , WeiR, WangTJet al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 4, 214 (2008).
  • Suhre K , MeisingerC, DoeringAet al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One5(11), e13953 (2010).
  • Rhee EP , ChengS, LarsonMGet al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 121(4), 1402–1411 (2011).
  • Bougneres P , Valleron A-J. Causes of early-onset Type 1 diabetes: toward data-driven environmental approaches. J. Exp. Med. 205(13), 2953–2957 (2008).
  • Knip M , VirtanenSM, AkerblomHK. Infant feeding and the risk of Type 1 diabetes. Am. J. Clin. Nutr. 91(5), 1506S–1513S (2010).
  • Zhao XJ , FritscheJ, WangJSet al. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics6(3), 362–374 (2010).
  • Lucio M , FeketeA, WeigertCet al. Insulin sensitivity is reflected by characteristic metabolic fingerprints – a fourier transform mass spectrometric non-targeted metabolomics approach. PLoS One5(10), e13317 (2010).
  • Sabatine MS , LiuE, MorrowDAet al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation112(25), 3868–3875 (2005).
  • Barba I , De Leon G, Martin Eet al. Nuclear magnetic resonance-based metabolomics predicts exercise-induced ischemia in patients with suspected coronary artery disease. Magn. Res. Med. 60(1), 27–32 (2008).
  • Lin HL , ZhangJ, GaoP. Silent myocardial ischemia is associated with altered plasma phospholipids. J. Clin. Lab. Anal. 23(1), 45–50 (2009).
  • Brindle JT , AnttiH, HolmesEet al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. Nat. Med. 8(12), 1439–1444 (2002).
  • Kirschenlohr HL , GriffinJL, ClarkeSCet al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nat. Med. 12(6), 705–710 (2006).
  • Lewis GD , WeiR, LiuEet al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J. Clin. Invest. 118(10), 3503–3512 (2008).
  • Mamas M , DunnW, BroadhurstDet al. Serum metabolomics identifies novel signature metabolites in very early cardiac ischaemia: first in human study. Circulation120(18), S892–S892 (2009).
  • Chen X , LiuLA, PalaciosGet al. Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci. 33(17–18), 2776–2783 (2010).
  • Ciborowski M , Martin-VenturaJL, MeilhacOet al. Metabolites secreted by human atherothrombotic aneurysms revealed through a metabolomic approach. J. Proteome Res. 10(3), 1374–1382 (2011).
  • Wang ZN , TangWHW, ChoL, BrennanDM, HazenSL. Targeted metabolomic evaluation of arginine methylation and cardiovascular risks potential mechanisms beyond nitric oxide synthase inhibition. Arterioscler. Thromb. Vasc. Biol. 29(9), 1383–1391 (2009).
  • Leo GC , DarrowAL. NMR-based metabolomics of urine for the atherosclerotic mouse model using apolipoprotein-E deficient mice. Magn. Res. Chem. 47, S20–S25 (2009).
  • Mayr M , ChungYL, MayrUet al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol. 25(10), 2135–2142 (2005).
  • Mercer JR , ChengKK, FiggNet al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res. 107(8), U1159 (2010).
  • Zhang FX , JiaZH, GaoPet al. Metabonomics study of atherosclerosis rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry. Talanta79(3), 836–844 (2009).
  • Zha WB , AJY, WangGJet al. Metabonomic characterization of early atherosclerosis in hamsters with induced cholesterol. Biomarkers14(6), 372–380 (2009).
  • Turnbaugh PJ , LeyRE, MahowaldMA, MagriniV, MardisER, GordonJI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444(7122), 1027–1031 (2006).
  • Dumas ME , BartonRH, ToyeAet al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA103(33), 12511–12516 (2006).
  • Wang ZN , KlipfellE, BennettBJet al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature472(7341), 57–82 (2011).
  • Cheng KK , BensonGM, GrimsditchDC, ReidDG, ConnorSC, GriffinJL. Metabolomic study of the LDL receptor null mouse fed a high-fat diet reveals profound perturbations in choline metabolism that are shared with ApoE null mice. Physiol. Genomics41(3), 224–231 (2010).
  • Teul J , RuperezFJ, GarciaAet al. Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC–MS and 1H NMR fingerprints. J. Proteome Res. 8(12), 5580–5589 (2009).
  • Alexander D , LombardiR, RodriguezG, MitchellMM, MarianAJ. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur. J. Clin. Invest. 41(5), 527–538 (2011).
  • Nikolaidou T , MamasM, DunnW, OceandyD, NeysesL. Biological action of α-ketoglutarate in the heart and kidney – a metabolite identified through a metabolomic search in patients with heart failure. Eur. J. Heart Failure (Suppl. 9), S268 (2010).
  • Mervaala E , BialaA, MerastoSet al. Metabolomics in angiotensin II-induced cardiac hypertrophy. Hypertension55(2), 508–515 (2010).
  • Kao HJ , ChengCF, ChenYHet al. ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional protein b-subunit. Human Mol. Genetics15(24), 3569–3577 (2006).
  • De Souza AI , CardinS, WaitRet al. Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J. Mol. Cell. Cardiol. 49(5), 851–863 (2010).
  • Mayr M , ChungYL, MayrUet al. Loss of PKC-δ alters cardiac metabolism. Am. J. Physiol. 287(2), H937–H945 (2004).
  • Mayr M , LiemD, ZhangJet al. Proteomic and metabolomic analysis of cardioprotection: Interplay between protein kinase C ε and δ in regulating glucose metabolism of murine hearts. J. Mol. Cell. Cardiol. 46(2), 268–277 (2009).
  • Turer AT , StevensRD, BainJRet al. Metabolomic profiling reveals distinct patterns of myocardial substrate use in humans with coronary artery disease or left ventricular dysfunction during surgical ischemia/reperfusion. Circulation119(13), U1736–U1788 (2009).
  • Shah SH , HauserER, BainJRet al. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol. Syst. Biol. 5, 258 (2009).
  • Bain JR , StevensRD, WennerBR, IlkayevaO, MuoioDM, NewgardCB. Metabolomics applied to diabetes research moving from information to knowledge. Diabetes58(11), 2429–2443 (2009).
  • Griffin JL , NichollsAW. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics7(7), 1095–1107 (2006).
  • Griffin JL , Vidal-PuigA. Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding? Physiol. Genomics34(1), 1–5 (2008).
  • Newgard CB , AttieAD. Getting biological about the genetics of diabetes. Nat. Med. 16(4), 388–391 (2010).
  • Atherton HJ , BaileyNJ, ZhangWet al. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genomics27(2), 178–186 (2006).
  • Connor SC , HansenMK, CornerA, SmithRF, RyanTE. Integration of metabolomics and transcriptomics data to aid biomarker discovery in Type 2 diabetes. Mol. Biosyst. 6(5), 909–921 (2010).
  • Tsutsui H , MaedaT, Toyo’okaTet al. Practical analytical approach for the identification of biomarker candidates in prediabetic state based upon metabonomic study by ultraperformance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry. J. Proteome Res. 9(8), 3912–3922 (2010).
  • Zhang SC , GowdaGN, AsiagoV, ShanaiahN, BarbasC, RafteryD. Correlative and quantitative H-1 NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. 383(1), 76–84 (2008).
  • Lanza IR , ZhangSC, WardLE, KarakelidesH, RafteryD, NairKS. Quantitative metabolomics by H-1-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PloS One5(5), e10538 (2010).
  • Spegel P , MalmgrenSI, SharoykoVV, NewsholmeP, KoeckT, MulderH. Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal β-cell lines. Biochem. J. 435, 277–284 (2011).
  • Tai ES , TanMLS, StevensRDet al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia53(4), 757–767 (2010).
  • Zisman A , PeroniOD, AbelEDet al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6(8), 924–928 (2000).
  • Koonen DPY , SungMMY, KaoCKCet al. Alterations in skeletal muscle fatty acid handling predisposes middle-aged mice to diet-induced insulin resistance. Diabetes59(6), 1366–1375 (2010).
  • Koves TR , UssherJR, NolandRCet al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7(1), 45–56 (2008).
  • Kuhl J , MoritzT, WagnerHet al. Metabolomics as a tool to evaluate exercise-induced improvements in insulin sensitivity. Metabolomics4(3), 273–282 (2008).
  • Zhao XJ , PeterA, FritscheJet al. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am. J. Physiol . 296(2), E384–E393 (2009).
  • Lin S , YangZ, LiuH, TangL, CaiZ. Beyond glucose: metabolic shifts in responses to the effects of the oral glucose tolerance test and the high-fructose diet in rats. Mol. Biosyst. 7(5), 1537–1548 (2011).
  • Janis MT , LaaksonenR, OresicM. Metabolomic strategies to identify tissue-specific effects of cardiovascular drugs. Expert Opin. Drug Metab. Toxicol. 4(6), 665–680 (2008).
  • Kaddurah-Daouk R , BaillieRA, ZhuHJet al. Lipidomic analysis of variation in response to simvastatin in the cholesterol and pharmacogenetics study. Metabolomics6(2), 191–201 (2010).
  • Li N , Liu J-Y, Timofeyev Vet al. Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: insight gained using metabolomic approaches. J. Mol. Cell. Cardiol. 47(6), 835–845 (2009).
  • Andreadou I , PapaefthimiouM, ZiraAet al. Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein. NMR Biomed. 22(6), 585–592 (2009).
  • Lv YH , LiuXR, YanSKet al. Metabolomic study of myocardial ischemia and intervention effects of Compound Danshen Tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 52(1), 129–135 (2010).
  • Force T , KolajaKL. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 10(2), 111–126 (2011).
  • Bombardier C , LaineL, ReicinAet al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N. Engl. J. Med. 343(21), 1520–1528 (2000).
  • Bresalier RS , SandlerRS, QuanHet al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352(11), 1092–1102 (2005).
  • Lu J , GongD, ChoongSYet al. Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia53(6), 1217–1226 (2010).
  • Aitken JF , LoomesKM, ScottDWet al. Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice. Diabetes59(1), 161–171 (2010).
  • Godzien J , CiborowskiM, AnguloSet al. Metabolomic approach with LC-QTOF to study the effect of a nutraceutical treatment on urine of diabetic rats. J. Proteome Res. 10(2), 837–844 (2011).
  • Gu Y , ZhangYF, ShiXZet al. Effect of traditional Chinese medicine berberine on Type 2 diabetes based on comprehensive metabonomics. Talanta81(3), 766–772 (2010).
  • Huo TG , CaiS, LuXM, ShaY, YuMY, LiFM. Metabonomic study of biochemical changes in the serum of Type 2 diabetes mellitus patients after the treatment of metformin hydrochloride. J. Pharm. Biomed. Anal. 49(4), 976–982 (2009).
  • Wang MY , ChenLJ, ClarkGOet al. Leptin therapy in insulin-deficient Type I diabetes. Proc. Natl Acad. Sci. USA107(11), 4813–4819 (2010).
  • Zhang HY , SahaJ, ByunJet al. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy. Am. J. Physiol. 295(4), F1071–F1081 (2008).
  • Van Doorn M , VogelsJ, TasAet al. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in Type 2 diabetes mellitus patients and healthy volunteers. Br. J. Clin. Pharmacol. 63(5), 562–574 (2007).
  • Bao YQ , ZhaoT, WangXYet al. Metabonomic variations in the drug-treated Type 2 diabetes mellitus patients and healthy volunteers. J. Proteome Res. 8(4), 1623–1630 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.