13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity

ORCID Icon, , & ORCID Icon
Received 19 Nov 2023, Accepted 15 Mar 2024, Published online: 25 Apr 2024

References

  • Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif. Intell. Rev. 55(3), 1947–1999 (2022).
  • Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat. Rev. Drug Disc. 21, 821–840 (2022).
  • Sun J, Xu M, Ru J et al. Small molecule-mediated targeting of microRNAs for drug discovery: experiments, computational techniques, and disease implications. Eur. J. Med. Chem. 275, 115500 (2023).
  • Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17(8), 547–558 (2018).
  • Janga SC, Tzakos A. Structure and organization of drug-target networks: insights from genomic approaches for drug discovery. Mol. Biosyst. 5(12), 1536–1548 (2009).
  • Guan L, Disney MD. Recent advances in developing small molecules targeting RNA. ACS Chem. Biol. 7(1), 73–86 (2012).
  • Ying S-Y, Chang DC, Lin S-L. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol. Biotechnol. 38, 257–268 (2008).
  • Cooper G, Adams K. The Cell: a Molecular Approach. Oxford University Press (2023).
  • Yoo BK, Santhekadur PK, Gredler R et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 53(5), 1538–1548 (2011).
  • Feng J, Hu S, Liu K, Sun G, Zhang Y. The role of microRNA in the regulation of tumor epithelial–mesenchymal transition. Cells 11(13), 1981 (2022).
  • Pan W, Chai B, Li L, Lu Z, Ma Z. p53/microRNA-34 axis in cancer and beyond. Heliyon 9, e15155 (2023).
  • Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J. Mol. Cell Biol. 6(3), 214–230 (2014).
  • Ito Y, Inoue A, Seers T et al. Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc. Natl Acad. Sci. USA 114(15), 3927–3932 (2017).
  • Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. Eur. J. Biochem. 268(10), 2784–2791 (2001).
  • Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23(16), 2919–2933 (2004).
  • Tarasov V, Jung P, Verdoodt B et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13), 1586–1593 (2007).
  • Bommer GT, Gerin I, Feng Y et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. 17(15), 1298–1307 (2007).
  • Okada N, Lin C-P, Ribeiro MC et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 28(5), 438–450 (2014).
  • Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLOS ONE 7(8), e42034 (2012).
  • Markey M, Berberich SJ. Full-length hdmX transcripts decrease following genotoxic stress. Oncogene 27(52), 6657–6666 (2008).
  • Navarro F, Lieberman J. miR-34 and p53: new insights into a complex functional relationship. PLOS ONE 10(7), e0132767 (2015).
  • Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13(2), 83–96 (2013).
  • Bautista-Sánchez D, Arriaga-Canon C, Pedroza-Torres A et al. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol. Ther. Nucleic Acids 20, 409–420 (2020).
  • Alotaibi AG, Li JV, Gooderham NJ. Tumour necrosis factor-alpha (TNF-α)-induced metastatic phenotype in colorectal cancer epithelial cells: mechanistic support for the role of microRNA-21. Cancers (Basel) 15(3), 627 (2023).
  • He Q, Ye A, Ye W et al. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis. 12(6), 576 (2021).
  • Escobar T, Yu C-R, Muljo SA, Egwuagu CE. STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54(6), 4017–4025 (2013).
  • Luo F, Xu Y, Ling M et al. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells. Toxicol. Appl. Pharmacol. 273(1), 27–34 (2013).
  • Sun X, Ma X, Wang J et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget 8(22), 36137 (2017).
  • Liu Y, Luo F, Wang B et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 370(1), 125–135 (2016).
  • Niu G, Wright KL, Huang M et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13), 2000–2008 (2002).
  • Zeng L, He X, Wang Y et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 21(1), 37–43 (2014).
  • Ge X-T, Lei P, Wang H-C et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci. Rep. 4(1), 1–11 (2014).
  • Soliman AM, Karam HM, Mekkawy MH, Ghorab MM. Antioxidant activity of novel quinazolinones bearing sulfonamide: potential radiomodulatory effects on liver tissues via NF-κB/PON1 pathway. Eur. J. Med. Chem. 197, 112333 (2020).
  • Soliman AM, Karam HM, Mekkawy MH, Higgins M, Dinkova-Kostova AT, Ghorab MM. Radiomodulatory effect of a non-electrophilic NQO1 inducer identified in a screen of new 6,8-diiodoquinolin-4(3H)-ones carrying a sulfonamide moiety. Eur. J. Med. Chem. 200, 112467 (2020).
  • Soliman AM, Ghorab WM, Lotfy DM, Karam HM, Ghorab MM, Ramadan LA. Novel iodoquinazolinones bearing sulfonamide moiety as potential antioxidants and neuroprotectors. Sci. Rep. 13(1), 15546 (2023).
  • Abbas SE, Awadallah FM, Ibrahin NA, Said EG, Kamel GM. New quinazolinone–pyrimidine hybrids: synthesis, anti-inflammatory, and ulcerogenicity studies. Eur. J. Med. Chem. 53, 141–149 (2012).
  • Zayed MF, Hassan MH. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm. J. 22(2), 157–162 (2014).
  • Ghorab MM, Alqahtani AS, Soliman AM, Askar AA. Antimicrobial, anticancer and immunomodulatory potential of new quinazolines bearing benzenesulfonamide moiety. Future Med. Chem. 15, 275–290 (2023).
  • Ghorab MM, Alqahtani AS, Soliman AM, Askar AA. Novel N-(substituted) thioacetamide quinazolinone benzenesulfonamides as antimicrobial agents. Int. J. Nanomedicine 15, 3161 (2020).
  • Soliman AM, Ghorab MM. Exploration of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio] acetamide derivatives as anticancer and radiosensitizing agents. Bioorg. Chem. 88, 102956 (2019).
  • El-Gazzar MG, Ghorab MM, Amin MA, Korany M, Khedr MA, El-Gazzar MG. Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur. J. Med. Chem. 248, 115087 (2023).
  • Soliman AM, Ghorab MM, Bua S, Supuran CT. Iodoquinazolinones bearing benzenesulfonamide as human carbonic anhydrase I, II, IX and XII inhibitors: synthesis, biological evaluation and radiosensitizing activity. Eur. J. Med. Chem. 200, 112449 (2020).
  • Alsaid MS, Al-Mishari AA, Soliman AM, Ragab FA, Ghorab MM. Discovery of benzo [g] quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem. 141, 84–91 (2017).
  • Zahran SS, Ragab FA, El-Gazzar MG, Soliman AM, Mahmoud WR, Ghorab MM. Antiproliferative, antiangiogenic and apoptotic effect of new hybrids of quinazoline-4 (3H)-ones and sulfachloropyridazine. Eur. J. Med. Chem., 245, 114912 (2023).
  • Kashyap M, Das D, Preet R et al. Scaffold hybridization in generation of indenoindolones as anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase. Bioorg. Med. Chem. lett. 22(7), 2474–2479 (2012).
  • Ghorab MM, Ragab FA, Heiba HI, Soliman AM. Design and synthesis of some novel 4-chloro-N-(4-(1-(2-(2-cyanoacetyl) hydrazono) ethyl) phenyl) benzenesulfonamide derivatives as anticancer and radiosensitizing agents. Eur. J. Med. Chem. 117, 8–18 (2016).
  • Ghorab MM, Sa El-Gaby M, Alsaid SM et al. Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. Anti Cancer Agents Med. Chem. 17(10), 1411–1425 (2017).
  • Rippin TM, Bykov VJ, Freund S, Selivanova G, Wiman KG, Fersht AR. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21(14), 2119–2129 (2002).
  • Furman RR, Sharman JP, Coutre SE et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370(11), 997–1007 (2014).
  • Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure–activity relationship studies based on quinazoline derivatives as EGFR kinase inhibitors (2017–present). Pharmaceuticals 16(4), 534 (2023).
  • Roskoski R Jr. ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol. Res. 87, 42–59 (2014).
  • Das D, Hong J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur. J. Med. Chem. 170, 55–72 (2019).
  • Soliman AM, Khalil A, Ramadan E, Ghorab MM. Induction of apoptosis, cytotoxicity and radiosensitization by novel 3,4-dihydroquinazolinone derivatives. Bioorg. Med. Chem. Lett. 49, 128308 (2021).
  • Nowar RM, Osman AEE, Abou-Seri SM, El Moghazy SM, Abou El Ella DA. Design, synthesis and biological evaluation of some novel quinazolinone derivatives as potent apoptotic inducers. Future Med. Chem. 10(10), 1191–1205 (2018).
  • Zhang G-H, Xue W-B, An Y-F et al. Distinct novel quinazolinone exhibits selective inhibition in MGC-803 cancer cells by dictating mutant p53 function. Eur. J. Med. Chem. 95, 377–387 (2015).
  • Lee K, Jeong K-W, Lee Y et al. Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors. Eur. J. Med. Chem. 45(11), 5420–5427 (2010).
  • Machado VA, Peixoto D, Costa R et al. Synthesis, antiangiogenesis evaluation and molecular docking studies of 1-aryl-3-[(thieno[3,2-b] pyridin-7-ylthio)phenyl] ureas: discovery of a new substitution pattern for type II VEGFR-2 Tyr kinase inhibitors. Bioorg. Med. Chem. 23(19), 6497–6509 (2015).
  • Mctigue M, Murray BW, Chen JH, Deng Y-L, Solowiej J, Kania RS. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl Acad. Sci. USA 109, 18281–18289 (2012).
  • Popowicz GM, Czarna A, Wolf S et al. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53–MDMX/MDM2 antagonist drug discovery. Cell Cycle 9(6), 1104–1111 (2010).
  • Duncan DB. Multiple range and multiple F tests. Biometrics 11(1), 1–42 (1955).
  • El Ella DaA, Ghorab MM, Heiba HI, Soliman AM. Synthesis of some new thiazolopyrane and thiazolopyranopyrimidine derivatives bearing a sulfonamide moiety for evaluation as anticancer and radiosensitizing agents. Med. Chem. Res. 21(9), 2395–2407 (2012).
  • Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9(3), 193 (2012).
  • Garrison WM. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87(2), 381–398 (1987).
  • Ghorab MM, Abdel-Kader MS, Alqahtani AS, Soliman AM. Synthesis of some quinazolinones inspired from the natural alkaloid L-norephedrine as EGFR inhibitors and radiosensitizers. J. Enzyme Inhib. Med. Chem. 36(1), 218–237 (2021).
  • Ghorab MM, Soliman AM, Bua S, Supuran CT. Biological evaluation, radiosensitizing activity and structural insights of novel halogenated quinazoline–sulfonamide conjugates as selective human carbonic anhydrases IX/XII inhibitors. Bioorg. Chem. 107, 104618 (2021).
  • Zahedifard M, Faraj FL, Paydar M et al. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways. Sci. Rep. 5(1), 1–17 (2015).
  • Soliman AM, Alqahtani AS, Ghorab MM. Novel sulfonamide benzoquinazolinones as dual EGFR/HER2 inhibitors, apoptosis inducers and radiosensitizers. J. Enzyme Inhib. Med. Chem. 34(1), 1030–1040 (2019).
  • Silva JL, Lima CG, Rangel LP et al. Recent synthetic approaches towards small molecule reactivators of p53. Biomolecules 10(4), 635 (2020).
  • Zhu S, Li T, Tan J et al. Bax is essential for death receptor-mediated apoptosis in human colon cancer cells. Cancer Biother. Radiopharm. 27(9), 577–581 (2012).
  • Al-Obeed O, Vaali-Mohammed M-A, Eldehna WM et al. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2-STAT3 pathway. Onco Targets Ther. 11, 3313–3322 (2018).
  • Ji R, Cheng Y, Yue J et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res. 100(11), 1579–1588 (2007).
  • Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol. Cancer 6, 1–7 (2007).
  • Yang Q, Diamond MP, Al-Hendy A. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. J. Clin. Epigenet. 2(1), PMID: 27099870 (2016).
  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29(6 Suppl. 16), 15–18 (2002).
  • Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D. Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol. 15(4), 297–310 (2005).
  • Ghorab MM, Alsaid MS, Soliman AM, Ragab FA. VEGFR-2 inhibitors and apoptosis inducers: synthesis and molecular design of new benzo[g] quinazolin bearing benzenesulfonamide moiety. J. Enzyme Inhib. Med. Chem. 32(1), 893–907 (2017).
  • Reuben SC, Gopalan A, Petit DM, Bishayee A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol. Nutr. Food Res. 56(1), 14–29 (2012).
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 438(7070), 967–974 (2005).
  • Li Z, Wang B, Tang L, Chen S, Li J. Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR/p70s6k signaling pathway. Iran. J. Basic Med. Sci. 19(4), 411 (2016).
  • Hussain A, Qazi AK, Mupparapu N et al. Modulation of glycolysis and lipogenesis by novel PI3K selective molecule represses tumor angiogenesis and decreases colorectal cancer growth. Cancer Lett. 374(2), 250–260 (2016).
  • Hussain A, Qazi AK, Mupparapu N et al. A novel PI3K axis selective molecule exhibits potent tumor inhibition in colorectal carcinogenesis. Mol. Carcinog. 55(12), 2135–2155 (2016).
  • Ha HA, Chiang JH, Tsai FJ et al. Novel quinazolinone MJ-33 induces AKT/mTOR-mediated autophagy-associated apoptosis in 5FU-resistant colorectal cancer cells. Oncol. Rep. 45(2), 680–692 (2021).
  • Hour M-J, Tsai S-C, Wu H-C et al. Antitumor effects of the novel quinazolinone MJ-33: inhibition of metastasis through the MAPK, AKT, NF-κB and AP-1 signaling pathways in DU145 human prostate cancer cells. Int. J. Oncol. 41(4), 1513–1519 (2012).
  • Cubedo E, Cordeu L, Bandres E et al. New symmetrical quinazoline derivatives selectively induce apoptosis in human cancer cells. Cancer Biol. Ther. 5(7), 850–859 (2006).
  • Panja S. Anti-cancer therapeutic potential of quinazoline based small molecules via global upregulation of miRNAs. Chem. Comm. 50(35), 4639–4642 (2014).
  • Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA 104(39), 15472–15477 (2007).
  • Luo H-J, Si D-J, Sun X-J et al. Structure-based discovery of novel α-aminoketone derivatives as dual p53-MDM2/MDMX inhibitors for the treatment of cancer. Eur. J. Med. Chem. 252, 115282 (2023).
  • Nivedha AK, Tautermann CS, Bhattacharya S et al. Identifying functional hotspot residues for biased ligand design in G-protein-coupled receptors. Mol. Pharmacol. 93(4), 288–296 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.