945
Views
3
CrossRef citations to date
0
Altmetric
Meeting Report

Meeting Report VLPNPV: Session 5: Plant based technology

&
Pages 3068-3073 | Received 14 Aug 2014, Accepted 31 Aug 2014, Published online: 12 Jan 2015

References

  • Bessa J, Zabel F, Link A, Jegerlehner A, Hinton H, Schmitz N, Bauer M, Kündig TM, Saudan P, Bachmann MF. Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses. Proc Natl Acad Sci U S A 2012; 109:20566-71; PMID:23169669; http://dx.doi.org/10.1073/pnas.1206970109
  • Link A, Zabel F, Schnetzler Y, Titz A, Brombacher F, Bachmann MF. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol 2012; 188:3724-33. PMID:22427639; http://dx.doi.org/10.4049/jimmunol.1103312
  • Scotti N, Rybicki EP. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines 2013; 12:211-24; PMID:23414411; http://dx.doi.org/10.1586/erv.12.147
  • Rybicki EP. Plant-made vaccines for humans and animals. Plant Biotechnol J 2010; 8:620-37; PMID:20233333; http://dx.doi.org/10.1111/j.1467-7652.2010.00507.x
  • Hayden EC, Reardon S. Should experimental drugs be used in the ebola outbreak? nature news. http://www.nature.com: Nature Publishing Group, 2014.
  • Langreth R, Chen C, Nash J, Lauerman J. Ebola drug made from tobacco plant saves US aid workers. http://www.bloomberg.com/news/2014-08-05/ebola-drug-made-from-tobacco-plant-saves-u-s-aid-workers.html
  • Wilson C. The long battle to find a cure for Ebola. New Scientist 2014; 223:7; http://dx.doi.org/10.1016/S0262-4079(14)61512-8
  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 2009; 103:706-14; PMID:19309755; http://dx.doi.org/10.1002/bit.22299
  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y. In planta engineering of viral RNA replicons: Efficient assembly by recombination of DNA modules deliveredy by Agrobacterium. Proc Natl Acad Sci 2004; 101:6852-7; PMID:15103020
  • Mor TS, Moon Y, Palmer KE, Mason HS. Geminivirus vectors for high-level expression of foregin proteins in plant cells. Biotechnol Bioeng 2003; 81:430-7; PMID:12491528
  • Sainsbury F, Lavoie PO, D'Aoust MA, Vezina LP, Lomonossoff GP. Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2. Plant Biotechnol J 2008; 6:82-92; PMID:17986176
  • Sainsbury F, Thuenemann EC, Lomonossoff GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 2009; 7:682-93; PMID:19627561; http://dx.doi.org/10.1111/j.1467-7652.2009.00434.x
  • Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP. A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J 2013; 11:839-46; PMID:23647743; http://dx.doi.org/10.1111/pbi.12076
  • Steinmetz NF. Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 2010; 6:634-41; PMID:20433947; http://dx.doi.org/10.1016/j.nano.2010.04.005
  • Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 2011; 22:901-8; PMID:21592772; http://dx.doi.org/10.1016/j.copbio.2011.04.020
  • Hjelm BE, Kilbourne J, Herbst-Kralovetz MM. TLR7 and 9 agonists are highly effective mucosal adjuvants for norovirus virus-like particle vaccines. Hum Vaccin Immunother 2014; 10:410-6; PMID:24280723; http://dx.doi.org/10.4161/hv.27147
  • D'Aoust MA, Couture MM, Charland N, Trepanier S, Landry N, Ors F, Vézina LP. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 2010; 8:607-19; PMID:20199612; http://dx.doi.org/10.1111/j.1467-7652.2009.00496.x
  • Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of bluetongue virus in northern Europe. Trends Microbiol 2009; 17:172-8; PMID:19299131; http://dx.doi.org/10.1016/j.tim.2009.01.001
  • Hartemink NA, Purse BV, Meiswinkel R, Brown HE, de Koeijer A, Elbers AR,Boender GJ, Rogers DJ, Heesterbeek JA. Mapping the basic reproduction number (R(0)) for vector-borne diseases: a case study on bluetongue virus. Epidemics 2009; 1:153-61; PMID:21352762; http://dx.doi.org/10.1016/j.epidem.2009.05.004
  • Elbers AR, Backx A, Mintiens K, Gerbier G, Staubach C, Hendrickx G, van der Spek A. Field observations during the Bluetongue serotype 8 epidemic in 2006. II. Morbidity and mortality rate, case fatality and clinical recovery in sheep and cattle in the Netherlands. Prev Vet Med 2008; 87:31-40; PMID:18620768; http://dx.doi.org/10.1016/j.prevetmed.2008.06.003
  • Batten CA, Maan S, Shaw AE, Maan NS, Mertens PP. A European field strain of bluetongue virus derived from two parental vaccine strains by genome segment reassortment. Virus Res 2008; 137:56-63; PMID:18598726; http://dx.doi.org/10.1016/j.virusres.2008.05.016
  • Maan NS, Maan S, Belaganahalli MN, Ostlund EN, Johnson DJ, Nomikou K, Mertens PP. Identification and differentiation of the twenty six bluetongue virus serotypes by RT-PCR amplification of the serotype-specific genome segment 2. PloS One 2012; 7:e32601; PMID:22389711; http://dx.doi.org/10.1371/journal.pone.0032601
  • Perez de Diego AC, Athmaram TN, Stewart M, Rodriguez-Sanchez B, Sanchez-Vizcaino JM, Noad R, Roy P. Characterization of protection afforded by a bivalent virus-like particle vaccine against bluetongue virus serotypes 1 and 4 in sheep. PloS One 2011; 6:e26666; PMID:22046324
  • Savini G, MacLachlan NJ, Sanchez-Vizcaino JM, Zientara S. Vaccines against bluetongue in Europe. Comp Immunol, Microbiol Infect Dis 2008; 31:101-20; PMID:17765305; http://dx.doi.org/10.1016/j.cimid.2007.07.006
  • Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M. In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 2012; 236:1305-13; PMID:22718313
  • Peyret H, Lomonossoff GP. The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 2013; 83:51-8; PMID:23479085; http://dx.doi.org/10.1007/s11103-013-0036-1
  • French TJ, Marshall JJ, Roy P. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J Virol 1990; 64:5695-700; PMID:2173762
  • French TJ, Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol 1990; 64:1530-6; PMID:2157041
  • Stewart M, Dovas CI, Chatzinasiou E, Athmaram TN, Papanastassopoulou M, Papadopoulos O, Roy P. Protective efficacy of Bluetongue virus-like and subvirus-like particles in sheep: presence of the serotype-specific VP2, independent of its geographic lineage, is essential for protection. Vaccine 2012; 30:2131-9; PMID:22285887; http://dx.doi.org/10.1016/j.vaccine.2012.01.042
  • Chung AW, Ghebremichael M, Robinson H, Brown E, Choi I, Lane S, Dugast AS, Schoen MK, Rolland M, Suscovich TJ, et al. Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci Transl Med 2014; 6.228ra38; PMID:24648341; 10.1126/scitranslmed.3007736
  • Haynes BF, Gilbert PB, McElrath J, Zolla-Pazner S, Tomaras GD, Alam SM, Evans DT, Montefiori DC, Karnasuta C, Sutthent R, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366:1275-86; PMID:22475592; http://dx.doi.org/10.1056/NEJMoa1113425
  • Rerks-Ngarm S, Pitisuttihum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009; 361:2210-20.
  • Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, Alam SM, Ferrari G, Yang ZY, Seaton KE, et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014; 6:228ra39; PMID:24648342; http://dx.doi.org/10.1126/scitranslmed.3007730
  • Stephenson KE, Li H, Walker BD, Michael NL, Barouch DH. Gag-Specific Cellular Immunity Determines In Vitro Viral Inhibition and In Vivo Virologic Control following Simian Immunodeficiency Virus Challenges of Vaccinated Rhesus Monkeys. J Virol 2012; 86:9583-9.
  • Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, Imamichi H, Bailer RT, Chakrabarti B, Sharma SK, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 2012; 491:406-12; PMID:23151583; http://dx.doi.org/10.1038/nature11544
  • Purtscher M, Trkola A, Gruber G, Buchacher A, Predl R, Steindl F, Tauer C, Berger R, Barrett N, Jungbauer A. A broadly neutralizing human monoclonal antibody against gp41 of Human Immunodeficiency Virus Type 1. AIDS Res Hum Retroviruses 1994; 10:1651-8; PMID:7888224; http://dx.doi.org/10.1089/aid.1994.10.1651
  • Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 2001; 75:10892-905; PMID:11602729; http://dx.doi.org/10.1128/JVI.75.22.10892-10905.2001
  • Kessans SA, Linhart MD, Matoba N, Mor T. Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. Plant Biotechnol j 2013; 11:681-90; PMID:23506331; http://dx.doi.org/10.1111/pbi.12058
  • Matoba N, Griffin TA, Mittman M, Doran JD, Alfsen A, Montefiori DC, Hanson CV, Bomsel M, Mor TS. Transcytosis-blocking Abs elicited by an oligomeric immunogen based on the membrane proximal region of HIV-1 gp41 target non-neutralizing epitopes. Curr HIV Res 2008; 6:218-29; PMID:18473785
  • Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS. Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 2009; 7:129-45; PMID:19037902; http://dx.doi.org/10.1111/j.1467-7652.2008.00381.x
  • Shen X, Dennison SM, Liu P, Gao F, Jaeger F, Montefiori DC, Verkoczy L, Haynes BF, Alam SM, Tomaras GD. Prolonged exposure of the HIV-1 gp41 membrane proximal region with L669S substitution. Proc Natl Acad Sci U S A 2010; 107:5972-7; PMID:20231447; http://dx.doi.org/10.1073/pnas.0912381107
  • Verkoczy L, Diaz M, Holl TM, Ouyang YB, Bouton-Verville H, Alam SM, Liao HX, Kelsoe G, Haynes BF. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci U S A 2010; 107:181-6; PMID:20018688; http://dx.doi.org/10.1073/pnas.0912914107
  • Tartaglia J, Perkus ME, Taylor J, Norton EK, Audonnet JC, Cox WJ, Davis SW, van der Hoeven J, Meignier B, Riviere M. NYVAC: A highly attenuated strain of vaccinia virus. Virology 1992; 188:217-32; PMID:1566575; http://dx.doi.org/10.1016/0042-6822(92)90752-B
  • Kibler KV, Gomez CE, Perdiguero B, Wong S, Huynh T, Holechek S, Arndt W, Jimenez V, Gonzalez-Sanz R, Denzler K, et al. Improved NYVAC-Based vaccine vectors. PloS One 2011; 6:e25674; PMID:22096477; http://dx.doi.org/10.1371/journal.pone.0025674
  • Quakkelaar ED, Redeker A, Haddad EK, Harari A, McCaughey SM, Duhen T, Filali-Mouhim A, Goulet JP, Loof NM, Ossendorp F, et al. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PloS One 2011; 6:e16819; PMID:21347234; http://dx.doi.org/10.1371/journal.pone.0016819
  • Gomez CE, Perdiguero B, Garcia-Arriaza J, Esteban M. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum Vaccin Immunother 2012; 8:1192-207; PMID:22906946; http://dx.doi.org/10.4161/hv.20778
  • Hansen SG, Piatak M, Jr., Ventura AB, Hughes CM, Gilbride RM, Ford JC, Oswald K, Shoemaker R, Li Y, Lewis MS, et al. Immune clearance of highly pathogenic SIV infection. Nature 2013; 502:100-4; PMID:24025770; http://dx.doi.org/10.1038/nature12519
  • Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, Gilbride RM, Lewis MS, Gilliam AN, Ventura AB, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013; 340:1237874; PMID:23704576; http://dx.doi.org/10.1126/science.1237874
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012; 8:147-66; PMID:21703993; http://dx.doi.org/10.1016/j.nano.2011.05.016
  • Kaiser CR, Flenniken ML, Gillitzer E, Harmsen AL, Harmsen AG, Jutila MA, Douglas T, Young MJ. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int J Nanomedicine 2007; 2:715-33; PMID:18203438
  • Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 2007; 120:41-50; PMID:17512998; http://dx.doi.org/10.1016/j.jconrel.2007.04.003
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14:1-16; PMID:22524388; http://dx.doi.org/10.1146/annurev-bioeng-071811-150124
  • Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 2010; 7:479-95; PMID:20331355; http://dx.doi.org/10.1517/17425240903579971
  • Daum N, Tscheka C, Neumeyer A, Schneider M. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4:52-65; PMID:22140017; http://dx.doi.org/10.1002/wnan.165
  • Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J biol phys 2013; 39:301-25; PMID:23860875; http://dx.doi.org/10.1007/s10867-013-9314-z
  • Rubin I, Yarden Y. The basic biology of HER2. Annals of Oncology 2001; 12:S3-S8; http://dx.doi.org/10.1093/annonc/12.suppl_1.S3
  • Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol 2013; 24:1740-8; PMID:23585514; http://dx.doi.org/10.1093/annonc/mdt133
  • Shukla S, Ablack AL, Wen AM, Lee KL, Lewis JD, Steinmetz NF. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol pharm 2013; 10:33-42; PMID:22731633; http://dx.doi.org/10.1021/mp300240m
  • Wen AM, Steinmetz NF. The aspect ratio of nanoparticle assemblies and the spatial arrangement of ligands can be optimized to enhance the targeting of cancer cells. Adv Healthc Mater 2014; 3:1739-44; PMID:24729309; http://dx.doi.org/10.1002/adhm.201400141
  • Montague NP, Thuenemann EC, Saxena P, Saunders K, Lenzi P, Lomonossoff GP. Recent advances of Cowpea mosaic virus-based particle technology. Hum Vaccin 2011; 7:383-90; PMID:21368585
  • Sainsbury F, Saunders K, Aljabali AA, Evans DJ, Lomonossoff GP. Peptide-controlled access to the interior surface of empty virus nanoparticles. Chembiochem 2011; 12:2435-40; PMID:21953809; http://dx.doi.org/10.1002/cbic.201100482
  • Saunders K, Sainsbury F, Lomonossoff GP. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology 2009; 393:329-37; PMID:19733890; http://dx.doi.org/10.1016/j.virol.2009.08.023
  • Bruckman MA, Randolph LN, VanMeter A, Hern S, Shoffstall AJ, Taurog RE, Steinmetz NF. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 2014; 449:163-73; PMID:24418549; http://dx.doi.org/10.1016/j.virol.2013.10.035
  • Butler JG. The current picture of the structure and assembly of tobacco mosaic virus. J General Virology 1984; 65:253-79; PMID:6363621; http://dx.doi.org/10.1099/0022-1317-65-2-253

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.