1,855
Views
19
CrossRef citations to date
0
Altmetric
Review

Proteomics in the characterization of adipose dysfunction in obesity

&
Pages 25-37 | Published online: 01 Jan 2012

References

  • Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011; 377:557 - 67; http://dx.doi.org/10.1016/S0140-6736(10)62037-5; PMID: 21295846
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395:763 - 70; http://dx.doi.org/10.1038/27376; PMID: 9796811
  • Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone?. Diabetes Care 2003; 26:2442 - 50; http://dx.doi.org/10.2337/diacare.26.8.2442; PMID: 12882876
  • Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115:1111 - 9; PMID: 15864338
  • Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 2009; 29:1575 - 91; http://dx.doi.org/10.1128/MCB.01300-08; PMID: 19114551
  • Rodríguez-Acebes S, Palacios N, Botella-Carretero JI, Olea N, Crespo L, Peromingo R, et al. Gene expression profiling of subcutaneous adipose tissue in morbid obesity using a focused microarray: distinct expression of cell-cycle- and differentiation-related genes. BMC Med Genomics 2010; 3:61; http://dx.doi.org/10.1186/1755-8794-3-61; PMID: 21182758
  • M´rquez-Quiñones A, Mutch DM, Debard C, Wang P, Combes M, Roussel B, et al, DiOGenes Project. Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake. Am J Clin Nutr 2010; 92:975 - 84; http://dx.doi.org/10.3945/ajcn.2010.29808; PMID: 20739421
  • Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett 2009; 583:3966 - 73; http://dx.doi.org/10.1016/j.febslet.2009.10.036; PMID: 19850042
  • Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol 2011; 7:481; http://dx.doi.org/10.1038/msb.2011.14; PMID: 21487400
  • Mehta P, Goyal S, Wingreen NS. A quantitative comparison of sRNA-based and protein-based gene regulation. Mol Syst Biol 2008; 4:221; http://dx.doi.org/10.1038/msb.2008.58; PMID: 18854820
  • Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 2009; 8:104 - 12; http://dx.doi.org/10.1021/pr800641v; PMID: 18954100
  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 2000; 97:9390 - 5; http://dx.doi.org/10.1073/pnas.160270797; PMID: 10920198
  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 1996; 93:14440 - 5; http://dx.doi.org/10.1073/pnas.93.25.14440; PMID: 8962070
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312:212 - 7; http://dx.doi.org/10.1126/science.1124619; PMID: 16614208
  • Lu B, Ruse C, Xu T, Park SK, Yates J 3rd. Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal Chem 2007; 79:1301 - 10; http://dx.doi.org/10.1021/ac061334v; PMID: 17297928
  • Adachi J, Kumar C, Zhang Y, Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 2007; 6:1257 - 73; http://dx.doi.org/10.1074/mcp.M600476-MCP200; PMID: 17409382
  • Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 2005; 184:285 - 93; http://dx.doi.org/10.1111/j.1365-201X.2005.01468.x; PMID: 16026420
  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116:1494 - 505; http://dx.doi.org/10.1172/JCI26498; PMID: 16691291
  • Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 1996; 2:800 - 3; http://dx.doi.org/10.1038/nm0796-800; PMID: 8673927
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259:87 - 91; http://dx.doi.org/10.1126/science.7678183; PMID: 7678183
  • Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994; 94:1543 - 9; http://dx.doi.org/10.1172/JCI117495; PMID: 7523453
  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436:356 - 62; http://dx.doi.org/10.1038/nature03711; PMID: 16034410
  • Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314:1 - 16; http://dx.doi.org/10.1016/j.mce.2009.07.031; PMID: 19682539
  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 2002; 99:16309 - 13; http://dx.doi.org/10.1073/pnas.222657499; PMID: 12456889
  • Chen X, Hess S. Adipose proteome analysis: focus on mediators of insulin resistance. Expert Rev Proteomics 2008; 5:827 - 39; http://dx.doi.org/10.1586/14789450.5.6.827; PMID: 19086862
  • Wang P, Mariman E, Keijer J, Bouwman F, Noben JP, Robben J, et al. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell Mol Life Sci 2004; 61:2405 - 17; http://dx.doi.org/10.1007/s00018-004-4256-z; PMID: 15378209
  • Orcl L, Tagaya M, Amherdt M, Perrelet A, Donaldson JG, Lippincott-Schwartz J, et al. Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 1991; 64:1183 - 95; http://dx.doi.org/10.1016/0092-8674(91)90273-2; PMID: 2004424
  • Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 2002; 13:2810 - 25; http://dx.doi.org/10.1091/mbc.01-12-0593; PMID: 12181348
  • Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005; 54:2277 - 86; http://dx.doi.org/10.2337/diabetes.54.8.2277; PMID: 16046292
  • Lehr S, Hartwig S, Lamers D, Famulla S, Mueller S, Hanisch FG, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics 2011; In press http://dx.doi.org/10.1074/mcp.M111.010504; PMID: 21947364
  • Xu X, Lan J, Korfmacher WA. Rapid LC/MS/MS method development for drug discovery. Anal Chem 2005; 77:389A - 94A; http://dx.doi.org/10.1021/ac053476f; PMID: 16247935
  • Moreno-Navarrete JM, Martínez-Barricarte R, Catalán V, Sabater M, Gómez-Ambrosi J, Ortega FJ, et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes 2010; 59:200 - 9; http://dx.doi.org/10.2337/db09-0700; PMID: 19833879
  • Mandal P, Pritchard MT, Nagy LE. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World J Gastroenterol 2010; 16:1330 - 6; http://dx.doi.org/10.3748/wjg.v16.i11.1330; PMID: 20238399
  • Zvonic S, Lefevre M, Kilroy G, Floyd ZE, DeLany JP, Kheterpal I, et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 2007; 6:18 - 28; http://dx.doi.org/10.1074/mcp.M600217-MCP200; PMID: 17018519
  • Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 1995; 27:435 - 8; PMID: 8519504
  • Lafontan M, Berlan M. Do regional differences in adipocyte biology provide new pathophysiological insights?. Trends Pharmacol Sci 2003; 24:276 - 83; http://dx.doi.org/10.1016/S0165-6147(03)00132-9; PMID: 12823953
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010; 11:11 - 8; http://dx.doi.org/10.1111/j.1467-789X.2009.00623.x; PMID: 19656312
  • Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21:697 - 738; http://dx.doi.org/10.1210/er.21.6.697; PMID: 11133069
  • Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring) 2006; 14:336 - 41; http://dx.doi.org/10.1038/oby.2006.43; PMID: 16571861
  • Roca-Rivada A, Alonso J, Al-Massadi O, Castelao C, Peinado JR, Seoane LM, et al. Secretome analysis of rat adipose tissues shows location-specific roles for each depot type. J Proteomics 2011; 74:1068 - 79; http://dx.doi.org/10.1016/j.jprot.2011.03.010; PMID: 21439414
  • Szalowska E, van Hijum SA, Roelofsen H, Hoek A, Vonk RJ, te Meerman GJ. Fractional factorial design for optimization of the SELDI protocol for human adipose tissue culture media. Biotechnol Prog 2007; 23:217 - 24; http://dx.doi.org/10.1021/bp0602294; PMID: 17269691
  • Kheterpal I, Ku G, Coleman L, Yu G, Ptitsyn AA, Floyd ZE, et al. Proteome of human subcutaneous adipose tissue stromal vascular fraction cells versus mature adipocytes based on DIGE. J Proteome Res 2011; 10:1519 - 27; http://dx.doi.org/10.1021/pr100887r; PMID: 21261302
  • Chen X, Hunt D, Cushman SW, Hess S. Proteomic characterization of thiazolidinedione regulation of obese adipose secretome in Zucker obese rats. Proteomics Clin Appl 2009; 3:1099 - 111; http://dx.doi.org/10.1002/prca.200900026; PMID: 21137009
  • Miyagi M, Rao KC. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom Rev 2007; 26:121 - 36; http://dx.doi.org/10.1002/mas.20116; PMID: 17086517
  • Gervois P, Fruchart JC, Staels B. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nat Clin Pract Endocrinol Metab 2007; 3:145 - 56; http://dx.doi.org/10.1038/ncpendmet0397; PMID: 17237841
  • Ahmed M, Neville MJ, Edelmann MJ, Kessler BM, Karpe F. Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring) 2010; 18:27 - 34; http://dx.doi.org/10.1038/oby.2009.208; PMID: 19556978
  • Lim JM, Sherling D, Teo CF, Hausman DB, Lin D, Wells L. Defining the regulated secreted proteome of rodent adipocytes upon the induction of insulin resistance. J Proteome Res 2008; 7:1251 - 63; http://dx.doi.org/10.1021/pr7006945; PMID: 18237111
  • Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr 2008; 100:227 - 35; http://dx.doi.org/10.1017/S0007114508971282; PMID: 18397542
  • Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 2009; 33:54 - 66; http://dx.doi.org/10.1038/ijo.2008.229; PMID: 19050672
  • Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 1993; 90:4304 - 8; http://dx.doi.org/10.1073/pnas.90.9.4304; PMID: 8387214
  • Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 2007; 455:479 - 92; http://dx.doi.org/10.1007/s00424-007-0301-8; PMID: 17609976
  • Regazzetti C, Peraldi P, Grémeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, et al. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 2009; 58:95 - 103; http://dx.doi.org/10.2337/db08-0457; PMID: 18984735
  • Choi S, Cho K, Kim J, Yea K, Park G, Lee J, et al. Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia. Biochem Biophys Res Commun 2009; 383:135 - 40; http://dx.doi.org/10.1016/j.bbrc.2009.03.124; PMID: 19336224
  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3:1154 - 69; http://dx.doi.org/10.1074/mcp.M400129-MCP200; PMID: 15385600
  • O’Rourke RW, White AE, Metcalf MD, Olivas AS, Mitra P, Larison WG, et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia 2011; 54:1480 - 90; http://dx.doi.org/10.1007/s00125-011-2103-y; PMID: 21400042
  • Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 2011; 60:1917 - 25; http://dx.doi.org/10.2337/db10-1707; PMID: 21593202
  • Yazbeck R, Howarth GS, Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease?. Trends Pharmacol Sci 2009; 30:600 - 7; http://dx.doi.org/10.1016/j.tips.2009.08.003; PMID: 19837468
  • Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368:1696 - 705; http://dx.doi.org/10.1016/S0140-6736(06)69705-5; PMID: 17098089
  • Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003; 40:209 - 94; http://dx.doi.org/10.1080/713609354; PMID: 12892317
  • Chen X, Cushman SW, Pannell LK, Hess S. Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-MS/MS approach. J Proteome Res 2005; 4:570 - 7; http://dx.doi.org/10.1021/pr049772a; PMID: 15822936
  • Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 2007; 56:2533 - 40; http://dx.doi.org/10.2337/db07-0007; PMID: 17639021
  • Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 1993; 268:10425 - 32; PMID: 7683678
  • Kjeldsen L, Bainton DF, Sengeløv H, Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 1994; 83:799 - 807; PMID: 8298140
  • LaLonde JM, Bernlohr DA, Banaszak LJ. The up-and-down beta-barrel proteins. FASEB J 1994; 8:1240 - 7; PMID: 8001736
  • Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436:356 - 62; http://dx.doi.org/10.1038/nature03711; PMID: 16034410
  • Shen F, Hu Z, Goswami J, Gaffen SL. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem 2006; 281:24138 - 48; http://dx.doi.org/10.1074/jbc.M604597200; PMID: 16798734
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest 2008; 118:1468 - 78; http://dx.doi.org/10.1172/JCI33869; PMID: 18317594
  • Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116:1793 - 801; http://dx.doi.org/10.1172/JCI29069; PMID: 16823477
  • Garay-Rojas E, Harper M, Hraba-Renevey S, Kress M. An apparent autocrine mechanism amplifies the dexamethasone- and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3. Gene 1996; 170:173 - 80; http://dx.doi.org/10.1016/0378-1119(95)00896-9; PMID: 8666241
  • Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension 2005; 45:828 - 33; http://dx.doi.org/10.1161/01.HYP.0000163475.04421.e4; PMID: 15824195
  • Seth P, Porter D, Lahti-Domenici J, Geng Y, Richardson A, Polyak K. Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res 2002; 62:4540 - 4; PMID: 12183401
  • Chen X, Al-Hasani H, Olausson T, Wenthzel AM, Smith U, Cushman SW. Activity, phosphorylation state and subcellular distribution of GLUT4-targeted Akt2 in rat adipose cells. J Cell Sci 2003; 116:3511 - 8; http://dx.doi.org/10.1242/jcs.00675; PMID: 12876218
  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409:307 - 12; http://dx.doi.org/10.1038/35053000; PMID: 11201732
  • Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2006; 103:1834 - 9; http://dx.doi.org/10.1073/pnas.0510847103; PMID: 16446425
  • Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432:917 - 21; http://dx.doi.org/10.1038/nature03104; PMID: 15531878
  • Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 2008; 22:1416 - 26; http://dx.doi.org/10.1210/me.2007-0420; PMID: 18292240
  • Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman DA, et al. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 2010; 59:1376 - 85; http://dx.doi.org/10.2337/db09-1735; PMID: 20332347
  • Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 2008; 22:1416 - 26; http://dx.doi.org/10.1210/me.2007-0420; PMID: 18292240
  • Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307:426 - 30; http://dx.doi.org/10.1126/science.1097243; PMID: 15604363
  • Tan NS, Shaw NS, Vinckenbosch N, Liu P, Yasmin R, Desvergne B, et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 2002; 22:5114 - 27; http://dx.doi.org/10.1128/MCB.22.14.5114-5127.2002; PMID: 12077340
  • Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, et al. Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J 2011; 25:754 - 64; http://dx.doi.org/10.1096/fj.10-165175; PMID: 20974668
  • Cowan SW, Newcomer ME, Jones TA. Crystallographic studies on a family of cellular lipophilic transport proteins. Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. J Mol Biol 1993; 230:1225 - 46; http://dx.doi.org/10.1006/jmbi.1993.1238; PMID: 7683727
  • Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 1994; 45:89 - 151; http://dx.doi.org/10.1016/S0065-3233(08)60639-7; PMID: 8154375
  • Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 2010; 59:872 - 82; http://dx.doi.org/10.2337/db09-1541; PMID: 20068130
  • Jun LS, Siddall CP, Rosen ED. A minor role for lipocalin 2 in high-fat diet-induced glucose intolerance. Am J Physiol Endocrinol Metab 2011; 301:E825 - 35; http://dx.doi.org/10.1152/ajpendo.00147.2011; PMID: 21771968
  • Guo H, Zhang Y, Brockman DA, Hahn W, Bernlohr DA, Chen X. Lipocalin 2 alters estradiol production and estrogen receptor signaling in female mice. Endocrinology 2012; In press http://dx.doi.org/10.1210/en.2011-1642; PMID: 22234464
  • Zorzano A, Wilkinson W, Kotliar N, Thoidis G, Wadzinkski BE, Ruoho AE, et al. Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem 1989; 264:12358 - 63; PMID: 2545707
  • James DE, Brown R, Navarro J, Pilch PF. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 1988; 333:183 - 5; http://dx.doi.org/10.1038/333183a0; PMID: 3285221
  • Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 1980; 255:4758 - 62; PMID: 6989818
  • Yang J, Holman GD. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem 1993; 268:4600 - 3; PMID: 8444835
  • Yeh JI, Verhey KJ, Birnbaum MJ. Kinetic analysis of glucose transporter trafficking in fibroblasts and adipocytes. Biochemistry 1995; 34:15523 - 31; http://dx.doi.org/10.1021/bi00047a018; PMID: 7492554
  • Lee W, Ryu J, Spangler RA, Jung CY. Modulation of GLUT4 and GLUT1 recycling by insulin in rat adipocytes: kinetic analysis based on the involvement of multiple intracellular compartments. Biochemistry 2000; 39:9358 - 66; http://dx.doi.org/10.1021/bi0007021; PMID: 10924130
  • Larance M, Ramm G, Stöckli J, van Dam EM, Winata S, Wasinger V, et al. Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 2005; 280:37803 - 13; http://dx.doi.org/10.1074/jbc.M503897200; PMID: 16154996
  • Guilherme A, Emoto M, Buxton JM, Bose S, Sabini R, Theurkauf WE, et al. Perinuclear localization and insulin responsiveness of GLUT4 requires cytoskeletal integrity in 3T3-L1 adipocytes. J Biol Chem 2000; 275:38151 - 9; http://dx.doi.org/10.1074/jbc.M003432200; PMID: 10950952
  • Jedrychowski MP, Gartner CA, Gygi SP, Zhou L, Herz J, Kandror KV, et al. Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J Biol Chem 2010; 285:104 - 14; http://dx.doi.org/10.1074/jbc.M109.040428; PMID: 19864425
  • Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 2004; 114:1281 - 9; PMID: 15520860
  • Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 2007; 92:1467 - 73; http://dx.doi.org/10.1210/jc.2006-2210; PMID: 17244782
  • Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34:267 - 73; http://dx.doi.org/10.1038/ng1180; PMID: 12808457
  • Semple RK, Crowley VC, Sewter CP, Laudes M, Christodoulides C, Considine RV, et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord 2004; 28:176 - 9; http://dx.doi.org/10.1038/sj.ijo.0802482; PMID: 14557831
  • Silva JP, Köhler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 2000; 26:336 - 40; http://dx.doi.org/10.1038/81649; PMID: 11062475
  • Wang CH, Wang CC, Wei YH. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann N Y Acad Sci 2010; 1201:157 - 65; http://dx.doi.org/10.1111/j.1749-6632.2010.05625.x; PMID: 20649552
  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114:1752 - 61; PMID: 15599400
  • Fridlyand LE, Philipson LH. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab 2006; 8:136 - 45; http://dx.doi.org/10.1111/j.1463-1326.2005.00496.x; PMID: 16448517
  • Adachi J, Kumar C, Zhang Y, Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol Cell Proteomics 2007; 6:1257 - 73; http://dx.doi.org/10.1074/mcp.M600476-MCP200; PMID: 17409382
  • Xie X, Yi Z, Bowen B, Wolf C, Flynn CR, Sinha S, et al. Characterization of the human adipocyte proteome and reproducibility of protein abundance by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J Proteome Res 2010; 9:4521 - 34; http://dx.doi.org/10.1021/pr100268f; PMID: 20812759
  • Cho SY, Park PJ, Shin ES, Lee JH, Chang HK, Lee TR. Proteomic analysis of mitochondrial proteins of basal and lipolytically (isoproterenol and TNF-alpha)-stimulated adipocytes. J Cell Biochem 2009; 106:257 - 66; http://dx.doi.org/10.1002/jcb.21998; PMID: 19097137
  • Mathy G, Sluse FE. Mitochondrial comparative proteomics: strengths and pitfalls. Biochim Biophys Acta. 2008; 1777:1072 - 7
  • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84:277 - 359; http://dx.doi.org/10.1152/physrev.00015.2003; PMID: 14715917
  • Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293:E444 - 52; http://dx.doi.org/10.1152/ajpendo.00691.2006; PMID: 17473055
  • Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev 2009; 23:788 - 97; http://dx.doi.org/10.1101/gad.1779209; PMID: 19339685
  • Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab 2009; 10:324 - 35; http://dx.doi.org/10.1016/j.cmet.2009.08.014; PMID: 19808025
  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1:376 - 86; http://dx.doi.org/10.1074/mcp.M200025-MCP200; PMID: 12118079
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005; 1:252 - 62; http://dx.doi.org/10.1038/nchembio736; PMID: 16408053
  • Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A 2007; 104:4401 - 6; http://dx.doi.org/10.1073/pnas.0610615104; PMID: 17360536
  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454:961 - 7; http://dx.doi.org/10.1038/nature07182; PMID: 18719582
  • Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 2011; 121:2102 - 10; http://dx.doi.org/10.1172/JCI46069; PMID: 21633178
  • Olofsson SO, Boström P, Andersson L, Rutberg M, Perman J, Borén J. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 2009; 1791:448 - 58; PMID: 18775796
  • Digel M, Ehehalt R, Füllekrug J. Lipid droplets lighting up: insights from live microscopy. FEBS Lett 2010; 584:2168 - 75; http://dx.doi.org/10.1016/j.febslet.2010.03.035; PMID: 20347811
  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999; 181:6441 - 8; PMID: 10515935
  • Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000; 21:3470 - 82; http://dx.doi.org/10.1002/1522-2683(20001001)21:16<3470::AID-ELPS3470>3.0.CO;2-G; PMID: 11079566
  • Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004; 279:3787 - 92; http://dx.doi.org/10.1074/jbc.M311945200; PMID: 14597625
  • Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 2004; 1644:47 - 59; http://dx.doi.org/10.1016/j.bbamcr.2003.10.018; PMID: 14741744
  • Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R. Association of stomatin with lipid bodies. J Biol Chem 2004; 279:23699 - 709; http://dx.doi.org/10.1074/jbc.M310546200; PMID: 15024010
  • Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004; 279:46835 - 42; http://dx.doi.org/10.1074/jbc.M409340200; PMID: 15337753
  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, et al. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002; 277:32253 - 7; http://dx.doi.org/10.1074/jbc.M204410200; PMID: 12077142
  • Paciga M, McCudden CR, Londos C, DiMattia GE, Wagner GF. Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells. J Biol Chem 2003; 278:49549 - 54; http://dx.doi.org/10.1074/jbc.M307302200; PMID: 14512426
  • Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE. Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 2003; 278:37713 - 21; http://dx.doi.org/10.1074/jbc.M304025200; PMID: 12840023
  • Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 2007; 6:3256 - 65; http://dx.doi.org/10.1021/pr070158j; PMID: 17608402
  • Beller M, Riedel D, Jänsch L, Dieterich G, Wehland J, Jäckle H, et al. Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 2006; 5:1082 - 94; http://dx.doi.org/10.1074/mcp.M600011-MCP200; PMID: 16543254
  • Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 2006; 16:1783 - 95; http://dx.doi.org/10.1016/j.cub.2006.07.062; PMID: 16979555
  • Wan HC, Melo RC, Jin Z, Dvorak AM, Weller PF. Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J 2007; 21:167 - 78; http://dx.doi.org/10.1096/fj.06-6711com; PMID: 17135363
  • Birner-Gruenberger R, Susani-Etzerodt H, Waldhuber M, Riesenhuber G, Schmidinger H, Rechberger G, et al. The lipolytic proteome of mouse adipose tissue. Mol Cell Proteomics 2005; 4:1710 - 7; http://dx.doi.org/10.1074/mcp.M500062-MCP200; PMID: 16048907
  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306:1383 - 6; http://dx.doi.org/10.1126/science.1100747; PMID: 15550674
  • Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 2004; 279:47066 - 75; http://dx.doi.org/10.1074/jbc.M403855200; PMID: 15337759
  • Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004; 279:48968 - 75; http://dx.doi.org/10.1074/jbc.M407841200; PMID: 15364929
  • Schittmayer M, Birner-Gruenberger R. Functional proteomics in lipid research: lipases, lipid droplets and lipoproteins. J Proteomics 2009; 72:1006 - 18; http://dx.doi.org/10.1016/j.jprot.2009.05.006; PMID: 19477308
  • Kanshin E, Wang S, Ashmarina L, Fedjaev M, Nifant’ev I, Mitchell GA, et al. The stoichiometry of protein phosphorylation in adipocyte lipid droplets: analysis by N-terminal isotope tagging and enzymatic dephosphorylation. Proteomics 2009; 9:5067 - 77; http://dx.doi.org/10.1002/pmic.200800861; PMID: 19921680
  • Ubersax JA, Ferrell JE Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007; 8:530 - 41; http://dx.doi.org/10.1038/nrm2203; PMID: 17585314
  • Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 2006; 55:2171 - 9; http://dx.doi.org/10.2337/db06-0148; PMID: 16873679
  • Krüger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A 2008; 105:2451 - 6; http://dx.doi.org/10.1073/pnas.0711713105; PMID: 18268350
  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 2000; 1502:139 - 44; PMID: 10899439
  • Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, et al. Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 2003; 88:4673 - 6; http://dx.doi.org/10.1210/jc.2003-030202; PMID: 14557439
  • Leonarduzzi G, Chiarpotto E, Biasi F, Poli G. 4-Hydroxynonenal and cholesterol oxidation products in atherosclerosis. Mol Nutr Food Res 2005; 49:1044 - 9; http://dx.doi.org/10.1002/mnfr.200500090; PMID: 16270277
  • Poli G, Schaur RJ. 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 2000; 50:315 - 21; http://dx.doi.org/10.1080/15216540051081092; PMID: 11327326
  • Singh SP, Niemczyk M, Saini D, Awasthi YC, Zimniak L, Zimniak P. Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry 2008; 47:3900 - 11; http://dx.doi.org/10.1021/bi702124u; PMID: 18311940
  • Grimsrud PA, Picklo MJ Sr., Griffin TJ, Bernlohr DA. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics 2007; 6:624 - 37; http://dx.doi.org/10.1074/mcp.M600120-MCP200; PMID: 17205980
  • Hertzel AV, Smith LA, Berg AH, Cline GW, Shulman GI, Scherer PE, et al. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am J Physiol Endocrinol Metab 2006; 290:E814 - 23; http://dx.doi.org/10.1152/ajpendo.00465.2005; PMID: 16303844