1,117
Views
18
CrossRef citations to date
0
Altmetric
Review

Receptor protein tyrosine phosphatases and cancer

New insights from structural biology

, &
Pages 356-364 | Received 07 May 2012, Accepted 22 Jun 2012, Published online: 01 Jul 2012

References

  • Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 1980; 77:1311 - 5; http://dx.doi.org/10.1073/pnas.77.3.1311; PMID: 6246487
  • Ostman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006; 6:307 - 20; http://dx.doi.org/10.1038/nrc1837; PMID: 16557282
  • Julien SG, Dubé N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 2011; 11:35 - 49; http://dx.doi.org/10.1038/nrc2980; PMID: 21179176
  • Charbonneau H, Tonks NK, Walsh KA, Fischer EH. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A 1988; 85:7182 - 6; http://dx.doi.org/10.1073/pnas.85.19.7182; PMID: 2845400
  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell 2004; 117:699 - 711; http://dx.doi.org/10.1016/j.cell.2004.05.018; PMID: 15186772
  • Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816 - 30; http://dx.doi.org/10.1111/j.1742-4658.2008.06249.x; PMID: 18298790
  • Johnson KG, Van Vactor D. Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev 2003; 83:1 - 24; PMID: 12506125
  • Stoker A. Methods for identifying extracellular ligands of RPTPs. Methods 2005; 35:80 - 9; http://dx.doi.org/10.1016/j.ymeth.2004.07.011; PMID: 15588989
  • LaForgia S, Morse B, Levy J, Barnea G, Cannizzaro LA, Li F, et al. Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. Proc Natl Acad Sci U S A 1991; 88:5036 - 40; http://dx.doi.org/10.1073/pnas.88.11.5036; PMID: 1711217
  • Krueger NX, Saito H. A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc Natl Acad Sci U S A 1992; 89:7417 - 21; http://dx.doi.org/10.1073/pnas.89.16.7417; PMID: 1323835
  • Gebbink MF, van Etten I, Hateboer G, Suijkerbuijk R, Beijersbergen RL, Geurts van Kessel A, et al. Cloning, expression and chromosomal localization of a new putative receptor-like protein tyrosine phosphatase. FEBS Lett 1991; 290:123 - 30; http://dx.doi.org/10.1016/0014-5793(91)81241-Y; PMID: 1655529
  • Brady-Kalnay SM, Flint AJ, Tonks NK. Homophilic binding of PTP mu, a receptor-type protein tyrosine phosphatase, can mediate cell-cell aggregation. J Cell Biol 1993; 122:961 - 72; http://dx.doi.org/10.1083/jcb.122.4.961; PMID: 8394372
  • Gebbink MF, Zondag GC, Wubbolts RW, Beijersbergen RL, van Etten I, Moolenaar WH. Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J Biol Chem 1993; 268:16101 - 4; PMID: 8393854
  • Sap J, Jiang YP, Friedlander D, Grumet M, Schlessinger J. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol Cell Biol 1994; 14:1 - 9; PMID: 8264577
  • Yu J, Becka S, Zhang P, Zhang X, Brady-Kalnay SM, Wang Z. Tumor-derived extracellular mutations of PTPRT /PTPrho are defective in cell adhesion. Mol Cancer Res 2008; 6:1106 - 13; http://dx.doi.org/10.1158/1541-7786.MCR-07-2123; PMID: 18644975
  • Zondag GC, Koningstein GM, Jiang YP, Sap J, Moolenaar WH, Gebbink MF. Homophilic interactions mediated by receptor tyrosine phosphatases mu and kappa. A critical role for the novel extracellular MAM domain. J Biol Chem 1995; 270:14247 - 50; PMID: 7782276
  • Becka S, Zhang P, Craig SEL, Lodowski DT, Wang Z, Brady-Kalnay SM. Characterization of the adhesive properties of the type IIb subfamily receptor protein tyrosine phosphatases. Cell Commun Adhes 2010; 17:34 - 47; http://dx.doi.org/10.3109/15419061.2010.487957; PMID: 20521994
  • Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005; 6:622 - 34; http://dx.doi.org/10.1038/nrm1699; PMID: 16025097
  • Berx G, van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 2009; 1:a003129; http://dx.doi.org/10.1101/cshperspect.a003129; PMID: 20457567
  • Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274:36734 - 40; http://dx.doi.org/10.1074/jbc.274.51.36734; PMID: 10593980
  • Yang C, Iyer RR, Yu ACH, Yong RL, Park DM, Weil RJ, et al. β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci U S A 2012; 109:6963 - 8; http://dx.doi.org/10.1073/pnas.1118754109; PMID: 22505738
  • Fuchs M, Müller T, Lerch MM, Ullrich A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 1996; 271:16712 - 9; http://dx.doi.org/10.1074/jbc.271.28.16712; PMID: 8663237
  • Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, et al. Dynamic interaction of PTPmu with multiple cadherins in vivo. J Cell Biol 1998; 141:287 - 96; http://dx.doi.org/10.1083/jcb.141.1.287; PMID: 9531566
  • Del Vecchio RL, Tonks NK. The conserved immunoglobulin domain controls the subcellular localization of the homophilic adhesion receptor protein-tyrosine phosphatase mu. J Biol Chem 2005; 280:1603 - 12; http://dx.doi.org/10.1074/jbc.M410181200; PMID: 15491993
  • Oblander SA, Ensslen-Craig SE, Longo FM, Brady-Kalnay SM. E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481 - 92; http://dx.doi.org/10.1016/j.mcn.2006.12.002; PMID: 17276081
  • Zondag GC, Reynolds AB, Moolenaar WH. Receptor protein-tyrosine phosphatase RPTPmu binds to and dephosphorylates the catenin p120(ctn). J Biol Chem 2000; 275:11264 - 9; http://dx.doi.org/10.1074/jbc.275.15.11264; PMID: 10753936
  • Besco JA, Hooft van Huijsduijnen R, Frostholm A, Rotter A. Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT). Brain Res 2006; 1116:50 - 7; http://dx.doi.org/10.1016/j.brainres.2006.07.122; PMID: 16973135
  • Yan H-X, Yang W, Zhang R, Chen L, Tang L, Zhai B, et al. Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion. J Biol Chem 2006; 281:15423 - 33; http://dx.doi.org/10.1074/jbc.M602607200; PMID: 16574648
  • Hellberg CB, Burden-Gulley SM, Pietz GE, Brady-Kalnay SM. Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherin-dependent adhesion in human prostate carcinoma cells. J Biol Chem 2002; 277:11165 - 73; http://dx.doi.org/10.1074/jbc.M112157200; PMID: 11801604
  • Burgoyne AM, Phillips-Mason PJ, Burden-Gulley SM, Robinson S, Sloan AE, Miller RH, et al. Proteolytic cleavage of protein tyrosine phosphatase μ regulates glioblastoma cell migration. Cancer Res 2009; 69:6960 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-09-0863; PMID: 19690139
  • Kim Y-S, Kang H-Y, Kim J-Y, Oh S, Kim C-H, Ryu CJ, et al. Identification of target proteins of N-acetylglucosaminyl transferase V in human colon cancer and implications of protein tyrosine phosphatase kappa in enhanced cancer cell migration. Proteomics 2006; 6:1187 - 91; http://dx.doi.org/10.1002/pmic.200500400; PMID: 16404719
  • Kim Y-S, Jung J-A, Kim H-J, Ahn YH, Yoo JS, Oh S, et al. Galectin-3 binding protein promotes cell motility in colon cancer by stimulating the shedding of protein tyrosine phosphatase kappa by proprotein convertase 5. Biochem Biophys Res Commun 2011; 404:96 - 102; http://dx.doi.org/10.1016/j.bbrc.2010.11.071; PMID: 21094132
  • Craig SEL, Brady-Kalnay SM. Tumor-derived extracellular fragments of receptor protein tyrosine phosphatases (RPTPs) as cancer molecular diagnostic tools. Anticancer Agents Med Chem 2011; 11:133 - 40; http://dx.doi.org/10.2174/187152011794941244; PMID: 21235433
  • Zhang P, Becka S, Craig SE, Lodowski DT, Brady-Kalnay SM, Wang Z. Cancer-derived mutations in the fibronectin III repeats of PTPRT/PTPrho inhibit cell-cell aggregation. Cell Commun Adhes 2009; 16:146 - 53; http://dx.doi.org/10.3109/15419061003653771; PMID: 20230342
  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004; 304:1164 - 6; http://dx.doi.org/10.1126/science.1096096; PMID: 15155950
  • Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W, et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci U S A 2007; 104:4060 - 4; http://dx.doi.org/10.1073/pnas.0611665104; PMID: 17360477
  • Aricescu AR, Siebold C, Choudhuri K, Chang VT, Lu W, Davis SJ, et al. Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 2007; 317:1217 - 20; http://dx.doi.org/10.1126/science.1144646; PMID: 17761881
  • Aricescu AR, Hon W-C, Siebold C, Lu W, van der Merwe PA, Jones EY. Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhesion. EMBO J 2006; 25:701 - 12; http://dx.doi.org/10.1038/sj.emboj.7600974; PMID: 16456543
  • Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807 - 12; http://dx.doi.org/10.1126/science.1164382; PMID: 18772396
  • Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333:1157 - 60; http://dx.doi.org/10.1126/science.1208130; PMID: 21798893
  • Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC-H, et al. The genetic landscape of the childhood cancer medulloblastoma. Science 2011; 331:435 - 9; http://dx.doi.org/10.1126/science.1198056; PMID: 21163964
  • Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463:360 - 3; http://dx.doi.org/10.1038/nature08672; PMID: 20054297
  • Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321:1801 - 6; http://dx.doi.org/10.1126/science.1164368; PMID: 18772397
  • Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474:609 - 15; http://dx.doi.org/10.1038/nature10166; PMID: 21720365
  • Durinck S, Ho C, Wang NJ, Liao W, Jakkula LR, Collisson EA, et al. Temporal Dissection of Tumorigenesis in Primary Cancers. Cancer Discov 2011; 1:137 - 43; http://dx.doi.org/10.1158/2159-8290.CD-11-0028; PMID: 21984974
  • Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012; 44:47 - 52; http://dx.doi.org/10.1038/ng.1032; PMID: 22158541
  • Jones S, Wang T-L, Shih IeM, Mao T-L, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330:228 - 31; http://dx.doi.org/10.1126/science.1196333; PMID: 20826764
  • Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, et al, NISC Comparative Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43:442 - 6; http://dx.doi.org/10.1038/ng.810; PMID: 21499247
  • Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314:268 - 74; http://dx.doi.org/10.1126/science.1133427; PMID: 16959974
  • Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet 2008; Chapter 10:Unit 10.11.
  • Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 2002; 296:1308 - 13; http://dx.doi.org/10.1126/science.1071559; PMID: 11964443
  • De Angelis E, Watkins A, Schäfer M, Brümmendorf T, Kenwrick S. Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet 2002; 11:1 - 12; http://dx.doi.org/10.1093/hmg/11.1.1; PMID: 11772994
  • Cismasiu VB, Denes SA, Reiländer H, Michel H, Szedlacsek SE. The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J Biol Chem 2004; 279:26922 - 31; http://dx.doi.org/10.1074/jbc.M313115200; PMID: 15084579
  • Streuli M, Krueger NX, Hall LR, Schlossman SF, Saito H. A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J Exp Med 1988; 168:1523 - 30; http://dx.doi.org/10.1084/jem.168.5.1523; PMID: 2972792
  • Tian SS, Tsoulfas P, Zinn K. Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 1991; 67:675 - 85; http://dx.doi.org/10.1016/0092-8674(91)90063-5; PMID: 1657402
  • Desai CJ, Gindhart JG Jr., Goldstein LS, Zinn K. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell 1996; 84:599 - 609; http://dx.doi.org/10.1016/S0092-8674(00)81035-1; PMID: 8598046
  • Krueger NX, Van Vactor D, Wan HI, Gelbart WM, Goodman CS, Saito H. The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 1996; 84:611 - 22; http://dx.doi.org/10.1016/S0092-8674(00)81036-3; PMID: 8598047
  • Meathrel K, Adamek T, Batt J, Rotin D, Doering LC. Protein tyrosine phosphatase sigma-deficient mice show aberrant cytoarchitecture and structural abnormalities in the central nervous system. J Neurosci Res 2002; 70:24 - 35; http://dx.doi.org/10.1002/jnr.10382; PMID: 12237861
  • Rashid-Doubell F, McKinnell I, Aricescu AR, Sajnani G, Stoker A. Chick PTPsigma regulates the targeting of retinal axons within the optic tectum. J Neurosci 2002; 22:5024 - 33; PMID: 12077198
  • Uetani N, Chagnon MJ, Kennedy TE, Iwakura Y, Tremblay ML. Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta. J Neurosci 2006; 26:5872 - 80; http://dx.doi.org/10.1523/JNEUROSCI.0386-06.2006; PMID: 16738228
  • Woo J, Kwon S-K, Choi S, Kim S, Lee J-R, Dunah AW, et al. Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009; 12:428 - 37; http://dx.doi.org/10.1038/nn.2279; PMID: 19252495
  • Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, et al. Postsynaptic TrkC and presynaptic PTPσ function as a bidirectional excitatory synaptic organizing complex. Neuron 2011; 69:287 - 303; http://dx.doi.org/10.1016/j.neuron.2010.12.024; PMID: 21262467
  • Kwon S-K, Woo J, Kim S-Y, Kim H, Kim E. Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem 2010; 285:13966 - 78; http://dx.doi.org/10.1074/jbc.M109.061127; PMID: 20139422
  • Aricescu AR, McKinnell IW, Halfter W, Stoker AW. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol 2002; 22:1881 - 92; http://dx.doi.org/10.1128/MCB.22.6.1881-1892.2002; PMID: 11865065
  • Fox AN, Zinn K. The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr Biol 2005; 15:1701 - 11; http://dx.doi.org/10.1016/j.cub.2005.08.035; PMID: 16213816
  • Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006; 49:517 - 31; http://dx.doi.org/10.1016/j.neuron.2006.01.026; PMID: 16476662
  • Biersmith BH, Hammel M, Geisbrecht ER, Bouyain S. The immunoglobulin-like domains 1 and 2 of the protein tyrosine phosphatase LAR adopt an unusual horseshoe-like conformation. J Mol Biol 2011; 408:616 - 27; http://dx.doi.org/10.1016/j.jmb.2011.03.013; PMID: 21402080
  • Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009; 326:592 - 6; http://dx.doi.org/10.1126/science.1178310; PMID: 19833921
  • Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, et al. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 2011; 332:484 - 8; http://dx.doi.org/10.1126/science.1200840; PMID: 21454754
  • Cox C, Bignell G, Greenman C, Stabenau A, Warren W, Stephens P, et al. A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci U S A 2005; 102:4542 - 7; http://dx.doi.org/10.1073/pnas.0408593102; PMID: 15761058
  • Solomon DA, Kim J-S, Cronin JC, Sibenaller Z, Ryken T, Rosenberg SA, et al. Mutational inactivation of PTPRD in glioblastoma multiforme and malignant melanoma. Cancer Res 2008; 68:10300 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-08-3272; PMID: 19074898
  • Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB, et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 2009; 106:9435 - 40; PMID: 19478061
  • Morris LGT, Taylor BS, Bivona TG, Gong Y, Eng S, Brennan CW, et al. Genomic dissection of the epidermal growth factor receptor (EGFR)/PI3K pathway reveals frequent deletion of the EGFR phosphatase PTPRS in head and neck cancers. Proc Natl Acad Sci U S A 2011; 108:19024 - 9; http://dx.doi.org/10.1073/pnas.1111963108; PMID: 22065749
  • Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466:869 - 73; http://dx.doi.org/10.1038/nature09208; PMID: 20668451
  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455:1069 - 75; http://dx.doi.org/10.1038/nature07423; PMID: 18948947
  • Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318:1108 - 13; http://dx.doi.org/10.1126/science.1145720; PMID: 17932254
  • Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet 2011; 43:828 - 9; http://dx.doi.org/10.1038/ng.903; PMID: 21822264
  • Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W. The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell 2000; 101:425 - 33; http://dx.doi.org/10.1016/S0092-8674(00)80852-1; PMID: 10830169
  • Mörtl M, Sonderegger P, Diederichs K, Welte W. The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction. Protein Sci 2007; 16:2174 - 83; http://dx.doi.org/10.1110/ps.072802707; PMID: 17766378
  • Sawaya MR, Wojtowicz WM, Andre I, Qian B, Wu W, Baker D, et al. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell 2008; 134:1007 - 18; http://dx.doi.org/10.1016/j.cell.2008.07.042; PMID: 18805093
  • Meijers R, Puettmann-Holgado R, Skiniotis G, Liu J-H, Walz T, Wang J-H, et al. Structural basis of Dscam isoform specificity. Nature 2007; 449:487 - 91; http://dx.doi.org/10.1038/nature06147; PMID: 17721508
  • Bouyain S, Watkins DJ. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A 2010; 107:2443 - 8; http://dx.doi.org/10.1073/pnas.0911235107; PMID: 20133774
  • Lamprianou S, Chatzopoulou E, Thomas J-L, Bouyain S, Harroch S. A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 2011; 108:17498 - 503; http://dx.doi.org/10.1073/pnas.1108774108; PMID: 21969550
  • Liu H, Focia PJ, He X. Homophilic adhesion mechanism of neurofascin, a member of the L1 family of neural cell adhesion molecules. J Biol Chem 2011; 286:797 - 805; http://dx.doi.org/10.1074/jbc.M110.180281; PMID: 21047790
  • Súrez Pestana E, Tenev T, Gross S, Stoyanov B, Ogata M, Böhmer FD. The transmembrane protein tyrosine phosphatase RPTPsigma modulates signaling of the epidermal growth factor receptor in A431 cells. Oncogene 1999; 18:4069 - 79; http://dx.doi.org/10.1038/sj.onc.1202794; PMID: 10435588
  • Aicher B, Lerch MM, Müller T, Schilling J, Ullrich A. Cellular redistribution of protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. J Cell Biol 1997; 138:681 - 96; http://dx.doi.org/10.1083/jcb.138.3.681; PMID: 9245795
  • Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 1996; 134:1519 - 29; http://dx.doi.org/10.1083/jcb.134.6.1519; PMID: 8830779
  • Müller T, Choidas A, Reichmann E, Ullrich A. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 1999; 274:10173 - 83; http://dx.doi.org/10.1074/jbc.274.15.10173; PMID: 10187801
  • Siu R, Fladd C, Rotin D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol Cell Biol 2007; 27:208 - 19; http://dx.doi.org/10.1128/MCB.00707-06; PMID: 17060446
  • Muise AM, Walters T, Wine E, Griffiths AM, Turner D, Duerr RH, et al. Protein-tyrosine phosphatase sigma is associated with ulcerative colitis. Curr Biol 2007; 17:1212 - 8; http://dx.doi.org/10.1016/j.cub.2007.06.013; PMID: 17614280
  • Krueger NX, Streuli M, Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 1990; 9:3241 - 52; PMID: 2170109
  • Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, et al. Cloning of three human tyrosine phosphatases reveals a multigene family of receptor-linked protein-tyrosine-phosphatases expressed in brain. Proc Natl Acad Sci U S A 1990; 87:7000 - 4; http://dx.doi.org/10.1073/pnas.87.18.7000; PMID: 2169617
  • Barnea G, Silvennoinen O, Shaanan B, Honegger AM, Canoll PD, D’Eustachio P, et al. Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Mol Cell Biol 1993; 13:1497 - 506; PMID: 8382771
  • Harroch S, Palmeri M, Rosenbluth J, Custer A, Okigaki M, Shrager P, et al. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta. Mol Cell Biol 2000; 20:7706 - 15; http://dx.doi.org/10.1128/MCB.20.20.7706-7715.2000; PMID: 11003666
  • Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum JD, Schlessinger J, et al. Receptor protein tyrosine phosphatase gamma is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol 2006; 26:5106 - 19; http://dx.doi.org/10.1128/MCB.00101-06; PMID: 16782895
  • Shintani T, Maeda N, Noda M. Receptor-like protein tyrosine phosphatase gamma (RPTPgamma), but not PTPzeta/RPTPbeta, inhibits nerve-growth-factor-induced neurite outgrowth in PC12D cells. Dev Neurosci 2001; 23:55 - 69; http://dx.doi.org/10.1159/000048696; PMID: 11173927
  • Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, et al. The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell 1995; 82:251 - 60; http://dx.doi.org/10.1016/0092-8674(95)90312-7; PMID: 7628014
  • Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E, et al. Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol 1997; 136:907 - 18; http://dx.doi.org/10.1083/jcb.136.4.907; PMID: 9049255
  • Hashemi H, Hurley M, Gibson A, Panova V, Tchetchelnitski V, Barr A, et al. Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis. Mol Cell Neurosci 2011; 46:469 - 82; http://dx.doi.org/10.1016/j.mcn.2010.11.012; PMID: 21112398
  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 1996; 271:21446 - 52; http://dx.doi.org/10.1074/jbc.271.35.21446; PMID: 8702927
  • Meng K, Rodriguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M, et al. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 2000; 97:2603 - 8; http://dx.doi.org/10.1073/pnas.020487997; PMID: 10706604
  • Fukada M, Fujikawa A, Chow JPH, Ikematsu S, Sakuma S, Noda M. Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett 2006; 580:4051 - 6; http://dx.doi.org/10.1016/j.febslet.2006.06.041; PMID: 16814777
  • Müller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM, et al. A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 2003; 22:6661 - 8; http://dx.doi.org/10.1038/sj.onc.1206763; PMID: 14555979
  • Perez-Pinera P, Alcantara S, Dimitrov T, Vega JA, Deuel TF. Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2006; 103:17795 - 800; http://dx.doi.org/10.1073/pnas.0607299103; PMID: 17098867
  • Bilwes AM, den Hertog J, Hunter T, Noel JP. Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 1996; 382:555 - 9; http://dx.doi.org/10.1038/382555a0; PMID: 8700232
  • Desai DM, Sap J, Schlessinger J, Weiss A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 1993; 73:541 - 54; http://dx.doi.org/10.1016/0092-8674(93)90141-C; PMID: 8490965
  • Hoffmann KM, Tonks NK, Barford D. The crystal structure of domain 1 of receptor protein-tyrosine phosphatase mu. J Biol Chem 1997; 272:27505 - 8; http://dx.doi.org/10.1074/jbc.272.44.27505; PMID: 9346878
  • Nam HJ, Poy F, Krueger NX, Saito H, Frederick CA. Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell 1999; 97:449 - 57; http://dx.doi.org/10.1016/S0092-8674(00)80755-2; PMID: 10338209
  • Nam H-J, Poy F, Saito H, Frederick CA. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med 2005; 201:441 - 52; http://dx.doi.org/10.1084/jem.20041890; PMID: 15684325
  • Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 2009; 136:352 - 63; http://dx.doi.org/10.1016/j.cell.2008.11.038; PMID: 19167335
  • Su J-L, Yang C-Y, Shih J-Y, Wei L-H, Hsieh C-Y, Jeng Y-M, et al. Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma. Cancer Res 2006; 66:2553 - 61; http://dx.doi.org/10.1158/0008-5472.CAN-05-2645; PMID: 16510572
  • Mauerer A, Roesch A, Hafner C, Stempfl T, Wild P, Meyer S, et al. Identification of new genes associated with melanoma. Exp Dermatol 2011; 20:502 - 7; http://dx.doi.org/10.1111/j.1600-0625.2011.01254.x; PMID: 21410771
  • Eckerich C, Zapf S, Ulbricht U, Müller S, Fillbrandt R, Westphal M, et al. Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia 2006; 53:1 - 12; http://dx.doi.org/10.1002/glia.20254; PMID: 16078236
  • Vezzalini M, Mombello A, Menestrina F, Mafficini A, Della Peruta M, van Niekerk C, et al. Expression of transmembrane protein tyrosine phosphatase gamma (PTPgamma) in normal and neoplastic human tissues. Histopathology 2007; 50:615 - 28; http://dx.doi.org/10.1111/j.1365-2559.2007.02661.x; PMID: 17394498

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.