4,126
Views
54
CrossRef citations to date
0
Altmetric
Review

Genetics and neurobiology of aggression in Drosophila

, &
Pages 35-48 | Published online: 01 Mar 2012

References

  • Mundiyanapurath S, Chan YB, Leung AK, Kravitz EA. Feminizing cholinergic neurons in a male Drosophila nervous system enhances aggression. Fly (Austin) 2009; 3:179 - 84; http://dx.doi.org/10.4161/fly.3.3.8989; PMID: 19556850
  • Anholt RR, Mackay TF. Quantitative genetic analyses of complex behaviours in Drosophila. Nat Rev Genet 2004; 5:838 - 49; http://dx.doi.org/10.1038/nrg1472; PMID: 15520793
  • Craig IW, Halton KE. Genetics of human aggressive behaviour. Hum Genet 2009; 126:101 - 13; http://dx.doi.org/10.1007/s00439-009-0695-9; PMID: 19506905
  • Huber R, Orzeszyna M, Pokorny N, Kravitz EA. Biogenic amines and aggression: experimental approaches in crustaceans. Brain Behav Evol 1997; 50:Suppl 1 60 - 8; http://dx.doi.org/10.1159/000113355; PMID: 9217993
  • Nilsen SP, Chan YB, Huber R, Kravitz EA. Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci U S A 2004; 101:12342 - 7; http://dx.doi.org/10.1073/pnas.0404693101; PMID: 15302936
  • Rollmann SM, Zwarts L, Edwards AC, Yamamoto A, Callaerts P, Norga K, et al. Pleiotropic effects of Drosophila neuralized on complex behaviors and brain structure. Genetics 2008; 179:1327 - 36; http://dx.doi.org/10.1534/genetics.108.088435; PMID: 18562639
  • Baier A, Wittek B, Brembs B. Drosophila as a new model organism for the neurobiology of aggression?. J Exp Biol 2002; 205:1233 - 40; PMID: 11948200
  • Miczek KA, de Almeida RM, Kravitz EA, Rissman EF, de Boer SF, Raine A. Neurobiology of escalated aggression and violence. J Neurosci 2007; 27:11803 - 6; http://dx.doi.org/10.1523/JNEUROSCI.3500-07.2007; PMID: 17978016
  • Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806; http://dx.doi.org/10.1371/journal.pone.0010806; PMID: 20520823
  • Wang L, Anderson DJ. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 2010; 463:227 - 31; http://dx.doi.org/10.1038/nature08678; PMID: 19966787
  • Zwarts L, Magwire MM, Carbone MA, Versteven M, Herteleer L, Anholt RR, et al. Complex genetic architecture of Drosophila aggressive behavior. Proc Natl Acad Sci U S A 2011; 108:17070 - 5; http://dx.doi.org/10.1073/pnas.1113877108; PMID: 21949384
  • Edwards AC, Zwarts L, Yamamoto A, Callaerts P, Mackay TF. Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol 2009; 7:29; http://dx.doi.org/10.1186/1741-7007-7-29; PMID: 19519879
  • Zhou C, Rao Y, Rao Y. A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 2008; 11:1059 - 67; http://dx.doi.org/10.1038/nn.2164; PMID: 19160504
  • Johnson O, Becnel J, Nichols CD. Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience 2009; 158:1292 - 300; http://dx.doi.org/10.1016/j.neuroscience.2008.10.055; PMID: 19041376
  • Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL, et al. Octopamine in male aggression of Drosophila. Curr Biol 2008; 18:159 - 67; http://dx.doi.org/10.1016/j.cub.2007.12.052; PMID: 18249112
  • Popova NK. From gene to aggressive behavior: the role of brain serotonin. Neurosci Behav Physiol 2008; 38:471 - 5; http://dx.doi.org/10.1007/s11055-008-9004-7; PMID: 18607754
  • Pinna G, Agis-Balboa RC, Pibiri F, Nelson M, Guidotti A, Costa E. Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem Res 2008; 33:1990 - 2007; http://dx.doi.org/10.1007/s11064-008-9718-5; PMID: 18473173
  • Rillich J, Schildberger K, Stevenson PA. Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets. Proc Biol Sci 2011; 278:1873 - 80; http://dx.doi.org/10.1098/rspb.2010.2099; PMID: 21106592
  • Miczek KA, Maxson SC, Fish EW, Faccidomo S. Aggressive behavioral phenotypes in mice. Behav Brain Res 2001; 125:167 - 81; http://dx.doi.org/10.1016/S0166-4328(01)00298-4; PMID: 11682108
  • Huber R, Smith K, Delago A, Isaksson K, Kravitz EA. Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. Proc Natl Acad Sci U S A 1997; 94:5939 - 42; http://dx.doi.org/10.1073/pnas.94.11.5939; PMID: 9159179
  • Yamamoto A, Zwarts L, Callaerts P, Norga K, Mackay TF, Anholt RR. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proc Natl Acad Sci U S A 2008; 105:12393 - 8; http://dx.doi.org/10.1073/pnas.0804889105; PMID: 18713854
  • Anholt RR, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, et al. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat Genet 2003; 35:180 - 4; http://dx.doi.org/10.1038/ng1240; PMID: 12958599
  • Edwards AC, Ayroles JF, Stone EA, Carbone MA, Lyman RF, Mackay TF. A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biol 2009; 10:R76; http://dx.doi.org/10.1186/gb-2009-10-7-r76; PMID: 19607677
  • Harbison ST, Carbone MA, Ayroles JF, Stone EA, Lyman RF, Mackay TF. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet 2009; 41:371 - 5; http://dx.doi.org/10.1038/ng.330; PMID: 19234472
  • Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, Magwire MM, et al. Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 2009; 41:299 - 307; http://dx.doi.org/10.1038/ng.332; PMID: 19234471
  • Scott JP, Fredericson E. The causes of fighting in mice and rats. Physiol Zool 1951; 24:273 - 309
  • McGlone JJ. Agonistic behavior in food animals: review of research and techniques. J Anim Sci 1986; 62:1130 - 9; PMID: 3519555
  • Ewbank R, Meese GB. Aggressive behaviour in groups of domesticated pigs on removal and return of individuals. Anim Prod 1971; 13:685 - 93; http://dx.doi.org/10.1017/S0003356100000179
  • Sturtevant AH. Experiments on sex recognition and the problem of sexual selection in Drosophilia. J Anim Behav 1915; 5:351 - 66; http://dx.doi.org/10.1037/h0074109
  • Jacobs ME. Influence of light on mating of Drosophila Melanogaster. Ecology 1960; 41:182 - 8; http://dx.doi.org/10.2307/1931952
  • Dow MA, von Schilcher F. Aggression and mating success in Drosophila melanogaster. Nature 1975; 254:511 - 2; http://dx.doi.org/10.1038/254511a0; PMID: 804664
  • Jacobs ME. Influence of beta-alanine on mating and territorialism in Drosophila melanogaster. Behav Genet 1978; 8:487 - 502; http://dx.doi.org/10.1007/BF01067478; PMID: 103533
  • Lee G, Hall JC. A newly uncovered phenotype associated with the fruitless gene of Drosophila melanogaster: aggression-like head interactions between mutant males. Behav Genet 2000; 30:263 - 75; http://dx.doi.org/10.1023/A:1026541215546; PMID: 11206081
  • Skrzipek KH, Kroner B, Hager H. Inter-male aggression in Drosophila melanogaster - Laboratory Study. Z Tierpsych - J Comp Ethol 1979; 43:107-20.
  • Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA. Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci U S A 2002; 99:5664 - 8; http://dx.doi.org/10.1073/pnas.082102599; PMID: 11960020
  • Hoffmann AA. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Anim Behav 1987; 35:807 - 18; http://dx.doi.org/10.1016/S0003-3472(87)80117-3
  • Dierick HA, Greenspan RJ. Molecular analysis of flies selected for aggressive behavior. Nat Genet 2006; 38:1023 - 31; http://dx.doi.org/10.1038/ng1864; PMID: 16906161
  • Ueda A, Kidokoro Y. Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Pysh Entomology 2002; 27:21 - 8; http://dx.doi.org/10.1046/j.1365-3032.2002.00262.x
  • Brown JL. The evolution of behavior. New York: W.W. Norton, 1975.
  • Fincke OM. Larval behaviour of a giant damselfly: territoriality or size-dependent dominance?. Anim Behav 1996; 51:77 - 87; http://dx.doi.org/10.1006/anbe.1996.0007
  • Kaufmann JH. On the definitions and functions of dominance and territorality. Biol Rev Camb Philos Soc 1983; 58:1 - 20; http://dx.doi.org/10.1111/j.1469-185X.1983.tb00379.x
  • Fonberg E. Dominance and aggression. Int J Neurosci 1988; 41:201 - 13; http://dx.doi.org/10.3109/00207458808990726; PMID: 3053479
  • Zagrodzka J, Fonberg E, Brudnias-Graczyk Z. Predatory dominance and aggressive display under imipramine treatment in cats. Acta Neurobiol Exp (Wars) 1985; 45:137 - 49; PMID: 4096277
  • Fonberg E, Brudnias-Stepowska Z, Zagrodzka J. Various relations between the predatory dominance and aggressive behavior in pairs of cats. Aggress Behav 1985; 11:103 - 14; http://dx.doi.org/10.1002/1098-2337(1985)11:2<103::AID-AB2480110203>3.0.CO;2-R
  • King JA. Intra- and interspecific conflict of Mus and Peromyscus. Ecology 1957; 38:355 - 7; http://dx.doi.org/10.2307/1931697
  • Francis RC. On the relationship between aggression and social dominance. Ethology 1988; 78:223 - 37; http://dx.doi.org/10.1111/j.1439-0310.1988.tb00233.x
  • Yurkovic A, Wang O, Basu AC, Kravitz EA. Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:17519 - 24; http://dx.doi.org/10.1073/pnas.0608211103; PMID: 17088536
  • Vrontou E, Nilsen SP, Demir E, Kravitz EA, Dickson BJ. fruitless regulates aggression and dominance in Drosophila. Nat Neurosci 2006; 9:1469 - 71; http://dx.doi.org/10.1038/nn1809; PMID: 17115036
  • Morse DH. Behavioral mechanisms in ecology. Cambridge, Massachusetts: Harvard University Press, 1980.
  • Wittenberger JF. Animal social behavior. Boston, Massachusetts: Duxbury Press, 1981.
  • Hoffmann AA. Genetic Analysis of territoriality in Drosophila. In: Boake CRB, ed. Quantitative genetic studies of behavioral evolution. Chicago: The University Of Chicago Press, 1994:188–205.
  • Spieth HT. Evolutionary implications of sexual behaviour in Drosophila. Evol Biol 1968; 2:157 - 93
  • Shelly TE. Lek behaviour of Drosophila cnecopleura in Hawaii. Ecol Entomol 1988; 13:51 - 5; http://dx.doi.org/10.1111/j.1365-2311.1988.tb00332.x
  • Partridge L, Hoffman AA, Jones JS. Male size and mating succes in Drosophila melanogaster and D. pseudoobscura under field conditions. Anim Behav 1987; 35:468 - 76; http://dx.doi.org/10.1016/S0003-3472(87)80272-5
  • Taylor CE, Kekic V. Sexual selection in a natural population of Drosophila melanogaster. Evolution 1988; 42:197 - 9; http://dx.doi.org/10.2307/2409128
  • Hoffmann AA. Heritable variation for territorial success in two Drosophila melanogaster populations. Anim Behav 1988; 36:1180 - 9; http://dx.doi.org/10.1016/S0003-3472(88)80077-0
  • Hoffmann AA. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and Drosophila simulans. Anim Behav 1987; 35:807 - 18; http://dx.doi.org/10.1016/S0003-3472(87)80117-3
  • Hoffmann AA. Geographic variation in the territorial success of Drosophila melanogaster males. Behav Genet 1989; 19:241 - 55; http://dx.doi.org/10.1007/BF01065908; PMID: 2497722
  • Hoffmann AA, Cacoyianni Z. Selection for territoriality in Drosophila melanogaster - correlated responses in mating success and other fitness components. Anim Behav 1989; 38:23 - 34; http://dx.doi.org/10.1016/S0003-3472(89)80062-4
  • Hoffmann AA, Cacoyianni Z. Territoriality in Drosophila melanogaster as a conditional strategy. Anim Behav 1990; 40:526 - 37; http://dx.doi.org/10.1016/S0003-3472(05)80533-0
  • Boake CHR. Correlation between courtship success, aggressive success, and body size in a picturewinged fly, Drosophila silvestris. Ethology 1989; 80:318 - 29; http://dx.doi.org/10.1111/j.1439-0310.1989.tb00750.x
  • Rodri´guez-Muñoz R, Bretman A, Slate J, Walling CA, Tregenza T. Natural and sexual selection in a wild insect population. Science 2010; 328:1269 - 72; http://dx.doi.org/10.1126/science.1188102; PMID: 20522773
  • Kamyshev NG, Smirnova GP, Kamysheva EA, Nikiforov ON, Parafenyuk IV, Ponomarenko VV. Plasticity of social behavior in Drosophila. Neurosci Behav Physiol 2002; 32:401 - 8; http://dx.doi.org/10.1023/A:1015832328023; PMID: 12243261
  • Leiser JK, Itzkowitz M. Changing tactics: dominance, territoriality, and the responses of “primary” males to competition from conditional breeders in the variegated pupfish (Cyprinodon variegatus). Behav Processes 2004; 66:119 - 30; http://dx.doi.org/10.1016/j.beproc.2004.01.008; PMID: 15110914
  • Itzkowitz M. Interrelationships of dominance and territorial behaviour in the pupfish, Cyprinodon variegatus. Behav Processes 1977; 2:383 - 91; http://dx.doi.org/10.1016/0376-6357(77)90008-0
  • Dierick HA, Greenspan RJ. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 2007; 39:678 - 82; http://dx.doi.org/10.1038/ng2029; PMID: 17450142
  • Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P. Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 2009; 6:297 - 303; http://dx.doi.org/10.1038/nmeth.1310; PMID: 19270697
  • Mundiyanapurath S, Certel S, Kravitz EA. Studying aggression in Drosophila (fruit flies). J Vis Exp 2007; 25:155; PMID: 18830427
  • Ueda A, Wu CF. Effects of social isolation on neuromuscular excitability and aggressive behaviors in Drosophila: altered responses by Hk and gsts1, two mutations implicated in redox regulation. J Neurogenet 2009; 23:378 - 94; http://dx.doi.org/10.3109/01677060903063026; PMID: 19863269
  • Cabral LG, Foley BR, Nuzhdin SV. Does sex trade with violence among genotypes in Drosophila melanogaster?. PLoS One 2008; 3:e1986
  • Hoffman AA. Territorial encounters between Drosophila males of different sizes. Anim Behav 1987; 35:1899 - 901; http://dx.doi.org/10.1016/S0003-3472(87)80085-4
  • Dierick HA. A method for quantifying aggression in male Drosophila melanogaster. Nat Protoc 2007; 2:2712 - 8; http://dx.doi.org/10.1038/nprot.2007.404; PMID: 18007606
  • Edwards AC, Rollmann SM, Morgan TJ, Mackay TF. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet 2006; 2:e154; http://dx.doi.org/10.1371/journal.pgen.0020154; PMID: 17044737
  • Certel SJ, Savella MG, Schlegel DC, Kravitz EA. Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci U S A 2007; 104:4706 - 11; http://dx.doi.org/10.1073/pnas.0700328104; PMID: 17360588
  • Certel SJ, Leung A, Lin CY, Perez P, Chiang AS, Kravitz EA. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010; 5:e13248; http://dx.doi.org/10.1371/journal.pone.0013248; PMID: 20967276
  • Mao Z, Davis RL. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 2009; 3:5; http://dx.doi.org/10.3389/neuro.04.005.2009; PMID: 19597562
  • Svetec N, Ferveur JF. Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J Exp Biol 2005; 208:891 - 8; http://dx.doi.org/10.1242/jeb.01454; PMID: 15755887
  • Hoffmann AA. The influence of age and experience with conspecifics on territorial behaviour in Drosophila melanogaster. J Insect Behav 1990; 3:1 - 12; http://dx.doi.org/10.1007/BF01049191
  • Wang L, Dankert H, Perona P, Anderson DJ. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci U S A 2008; 105:5657 - 63; http://dx.doi.org/10.1073/pnas.0801327105; PMID: 18408154
  • Wang L, Han X, Mehren J, Hiroi M, Billeter JC, Miyamoto T, et al. Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 2011; 14:757 - 62; http://dx.doi.org/10.1038/nn.2800; PMID: 21516101
  • Liu W, Liang X, Gong J, Yang Z, Zhang YH, Zhang JX, et al. Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila. Nat Neurosci 2011; 14:896 - 902; http://dx.doi.org/10.1038/nn.2836; PMID: 21685916
  • Fern´ndez MP, Chan YB, Yew JY, Billeter JC, Dreisewerd K, Levine JD, et al. Pheromonal and behavioral cues trigger male-to-female aggression in Drosophila. PLoS Biol 2010; 8:e1000541; http://dx.doi.org/10.1371/journal.pbio.1000541; PMID: 21124886
  • Jonsson T, Kravitz EA, Heinrich R. Sound production during agonistic behavior of male Drosophila melanogaster. Fly (Austin) 2011; 5:29 - 38; http://dx.doi.org/10.4161/fly.5.1.13713; PMID: 20953152
  • Wu CF, Wong F. Frequency characteristics in the visual system of Drosophila: genetic dissection of electroretinogram components. J Gen Physiol 1977; 69:705 - 24; http://dx.doi.org/10.1085/jgp.69.6.705; PMID: 894240
  • Borycz J, Borycz JA, Kubo´w A, Lloyd V, Meinertzhagen IA. Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. J Exp Biol 2008; 211:3454 - 66; http://dx.doi.org/10.1242/jeb.021162; PMID: 18931318
  • Sitaraman D, Zars M, Laferriere H, Chen YC, Sable-Smith A, Kitamoto T, et al. Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci U S A 2008; 105:5579 - 84; http://dx.doi.org/10.1073/pnas.0710168105; PMID: 18385379
  • Diegelmann S, Zars M, Zars T. Genetic dissociation of acquisition and memory strength in the heat-box spatial learning paradigm in Drosophila. Learn Mem 2006; 13:72 - 83; http://dx.doi.org/10.1101/lm.45506; PMID: 16418434
  • Hing AL, Carlson JR. Male-male courtship behavior induced by ectopic expression of the Drosophila white gene: role of sensory function and age. J Neurobiol 1996; 30:454 - 64; http://dx.doi.org/10.1002/(SICI)1097-4695(199608)30:4<454::AID-NEU2>3.0.CO;2-2; PMID: 8844509
  • Nilsson EE, Asztalos Z, Lukacsovich T, Awano W, Usui-aoki K, Yamamoto D. Fruitless is in the regulatory pathway by which ectopic mini-white and transformer induce bisexual courtship in Drosophila. J Neurogenet 2000; 13:213 - 32; http://dx.doi.org/10.3109/01677060009084495; PMID: 10858821
  • An X, Armstrong JD, Kaiser K, O'Dell KM. The effects of ectopic white and transformer expression on Drosophila courtship behavior. J Neurogenet 2000; 14 227. 43 71
  • Kurkulos M, Weinberg JM, Pepling ME, Mount SM. Polyadenylylation in copia requires unusually distant upstream sequences. Proc Natl Acad Sci U S A 1991; 88:3038 - 42; http://dx.doi.org/10.1073/pnas.88.8.3038; PMID: 1849643
  • Rabinow L, Birchler JA. A dosage-sensitive modifier of retrotransposon-induced alleles of the Drosophila white locus. EMBO J 1989; 8:879 - 89; PMID: 2542025
  • Benton R. Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci 2007; 30:512 - 9; http://dx.doi.org/10.1016/j.tins.2007.07.004; PMID: 17825436
  • Jefferis GS, Marin EC, Watts RJ, Luo L. Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr Opin Neurobiol 2002; 12:80 - 6; http://dx.doi.org/10.1016/S0959-4388(02)00293-3; PMID: 11861168
  • Ruta V, Datta SR, Vasconcelos ML, Freeland J, Looger LL, Axel R. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 2010; 468:686 - 90; http://dx.doi.org/10.1038/nature09554; PMID: 21124455
  • Gerber B, Stocker RF, Tanimura T, Thum AS. Smelling, tasting, learning: Drosophila as a study case. Results Probl Cell Differ 2009; 47:139 - 85; http://dx.doi.org/10.1007/400_2008_9; PMID: 19145411
  • Zars T. Spatial orientation in Drosophila. J Neurogenet 2009; 23:104 - 10; http://dx.doi.org/10.1080/01677060802441364; PMID: 19052956
  • Joiner MA, Griffith LC. Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn Mem 2000; 7:32 - 42; http://dx.doi.org/10.1101/lm.7.1.32; PMID: 10706600
  • Liu L, Wolf R, Ernst R, Heisenberg M. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 1999; 400:753 - 6; http://dx.doi.org/10.1038/22919; PMID: 10466722
  • Murthy M. Unraveling the auditory system of Drosophila. Curr Opin Neurobiol 2010; 20:281 - 7; http://dx.doi.org/10.1016/j.conb.2010.02.016; PMID: 20362428
  • Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci 2003; 4:266 - 75; http://dx.doi.org/10.1038/nrn1074; PMID: 12671643
  • Strauss R, Heisenberg M. A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 1993; 13:1852 - 61; PMID: 8478679
  • Sehgal A, Joiner W, Crocker A, Koh K, Sathyanarayanan S, Fang Y, et al. Molecular analysis of sleep: wake cycles in Drosophila. Cold Spring Harb Symp Quant Biol 2007; 72:557 - 64; http://dx.doi.org/10.1101/sqb.2007.72.018; PMID: 18419315
  • Joiner WJ, Crocker A, White BH, Sehgal A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 2006; 441:757 - 60; http://dx.doi.org/10.1038/nature04811; PMID: 16760980
  • Molina Y, O’Donnell S. Mushroom body volume is related to social aggression and ovary development in the paperwasp Polistes instabilis. Brain Behav Evol 2007; 70:137 - 44; http://dx.doi.org/10.1159/000102975; PMID: 17519526
  • Molina Y, O’Donnell S. Age, sex, and dominance-related mushroom body plasticity in the paperwasp Mischocyttarus mastigophorus. Dev Neurobiol 2008; 68:950 - 9; http://dx.doi.org/10.1002/dneu.20633; PMID: 18361403
  • Chan YB, Kravitz EA. Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:19577 - 82; http://dx.doi.org/10.1073/pnas.0709803104; PMID: 18042702
  • Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121:185 - 99; PMID: 2563713
  • Flint J, Mackay TF. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res 2009; 19:723 - 33; http://dx.doi.org/10.1101/gr.086660.108; PMID: 19411597
  • Belknap JK, Phillips TJ, O’Toole LA. Quantitative trait loci associated with brain weight in the BXD/Ty recombinant inbred mouse strains. Brain Res Bull 1992; 29:337 - 44; http://dx.doi.org/10.1016/0361-9230(92)90065-6; PMID: 1393606
  • Johnson TE, DeFries JC, Markel PD. Mapping quantitative trait loci for behavioral traits in the mouse. Behav Genet 1992; 22:635 - 53; http://dx.doi.org/10.1007/BF01066635; PMID: 1363267
  • Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM, et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 1991; 351:542 - 7; http://dx.doi.org/10.1038/351542a0; PMID: 1675432
  • Sullivan PF. The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 2010; 68:182 - 6; http://dx.doi.org/10.1016/j.neuron.2010.10.003; PMID: 20955924
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447:661 - 78; http://dx.doi.org/10.1038/nature05911; PMID: 17554300
  • Edwards AC, Mackay TF. Quantitative trait loci for aggressive behavior in Drosophila melanogaster. Genetics 2009; 182:889 - 97; http://dx.doi.org/10.1534/genetics.109.101691; PMID: 19414563
  • Sambandan D, Yamamoto A, Fanara JJ, Mackay TF, Anholt RR. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 2006; 174:1349 - 63; http://dx.doi.org/10.1534/genetics.106.060574; PMID: 17028343
  • Harbison ST, Carbone M, Ayroles JF, Stone EA, Lyman RF, Mackay TF. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila. Nat Genet 2009; 41:371 - 5; http://dx.doi.org/10.1038/ng.330
  • Turri MG, Datta SR, DeFries J, Henderson ND, Flint J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol 2001; 11:725 - 34; http://dx.doi.org/10.1016/S0960-9822(01)00206-8; PMID: 11378382
  • Legare ME, Bartlett FS 2nd, Frankel WN. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res 2000; 10:42 - 8; PMID: 10645948
  • Harbison ST, Yamamoto AH, Fanara JJ, Norga KK, Mackay TF. Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 2004; 166:1807 - 23; http://dx.doi.org/10.1534/genetics.166.4.1807; PMID: 15126400
  • Robin C, Daborn PJ, Hoffmann AA. Fighting fly genes. Trends Genet 2007; 23:51 - 4; http://dx.doi.org/10.1016/j.tig.2006.12.005; PMID: 17188395
  • Harbison ST, Sehgal A. Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 2008; 178:2341 - 60; http://dx.doi.org/10.1534/genetics.107.081232; PMID: 18430954
  • Norga KK, Gurganus MC, Dilda CL, Yamamoto A, Lyman RF, Patel PH, et al. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol 2003; 13:1388 - 96; http://dx.doi.org/10.1016/S0960-9822(03)00546-3; PMID: 12932322
  • Mackay TF, Stone EA, Ayroles JF. The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 2009; 10:565 - 77; http://dx.doi.org/10.1038/nrg2612; PMID: 19584810
  • Ledford H. Population genomics for fruitflies. Nature 2008; 453:1154 - 5; http://dx.doi.org/10.1038/4531154a; PMID: 18580910
  • Spieth HT. Courtship behavior in Drosophila. Annu Rev Entomol 1974; 19:385 - 405; http://dx.doi.org/10.1146/annurev.en.19.010174.002125; PMID: 4205689
  • Kaneshiro KYB. C.R.B. Sexual selection and speciation: issues raised by Hawaiian Drosophila. Trends Ecol Evol 1987; 27:207 - 12; http://dx.doi.org/10.1016/0169-5347(87)90022-X
  • Stevenson PA, Dyakonova V, Rillich J, Schildberger K. Octopamine and experience-dependent modulation of aggression in crickets. J Neurosci 2005; 25:1431 - 41; http://dx.doi.org/10.1523/JNEUROSCI.4258-04.2005; PMID: 15703397
  • Kostowski W, Tarchalska B, Wan´chowicz B. Brain catecholamines, spontaneous bioelectrical activity and aggressive behavior in ants (Formica rufa). Pharmacol Biochem Behav 1975; 3:337 - 42; http://dx.doi.org/10.1016/0091-3057(75)90040-4; PMID: 168591
  • Kostowski W, Tarchalska-Krynska B, Markowska L. Aggressive behavior and brain serotonin and catecholamines in ants (Formica rufa). Pharmacol Biochem Behav 1975; 3:717 - 9; http://dx.doi.org/10.1016/0091-3057(75)90200-2; PMID: 1237899
  • Adamo SA, Linn CE, Hoy RR. The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus. J Exp Biol 1995; 198:1691 - 700; PMID: 7636443
  • Rillich J, Schildberger K, Stevenson PA. Octopamine and occupancy: an aminergic mechanism for intruder-resident aggression in crickets. Proc Biol Sci 2011; 278:1873 - 80; http://dx.doi.org/10.1098/rspb.2010.2099; PMID: 21106592
  • Guerrieri FJ, d’Ettorre P. The mandible opening response: quantifying aggression elicited by chemical cues in ants. J Exp Biol 2008; 211:1109 - 13; http://dx.doi.org/10.1242/jeb.008508; PMID: 18344485
  • Yusuf AA, Pirk CW, Crewe RM, Njagi PG, Gordon I, Torto B. Nestmate recognition and the role of cuticular hydrocarbons in the African termite raiding ant Pachycondyla analis. J Chem Ecol 2010; 36:441 - 8; http://dx.doi.org/10.1007/s10886-010-9774-6; PMID: 20349337
  • Hunt GJ. Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J Insect Physiol 2007; 53:399 - 410; http://dx.doi.org/10.1016/j.jinsphys.2007.01.010; PMID: 17379239
  • Van Wilgenburg E, Cle´mencet J, Tsutsui ND. Experience influences aggressive behaviour in the Argentine ant. Biol Lett 2010; 6:152 - 5; http://dx.doi.org/10.1098/rsbl.2009.0616; PMID: 19793741
  • Arechavaleta-Velasco ME, Hunt GJ, Emore C. Quantitative trait loci that influence the expression of guarding and stinging behaviors of individual honey bees. Behav Genet 2003; 33:357 - 64; http://dx.doi.org/10.1023/A:1023458827643; PMID: 12837024
  • Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, et al. Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 2007; 94:247 - 67; http://dx.doi.org/10.1007/s00114-006-0183-1; PMID: 17171388
  • Ghosal K, Naples SP, Rabe AR, Killian KA. Agonistic behavior and electrical stimulation of the antennae induces Fos-like protein expression in the male cricket brain. Arch Insect Biochem Physiol 2010; 74:38 - 51; http://dx.doi.org/10.1002/arch.20360; PMID: 20422717
  • Gorczyca MG, Hall JC. Immunohistochemical localization of choline acetyltransferase during development and in Chats mutants of Drosophila melanogaster. J Neurosci 1987; 7:1361 - 9; PMID: 3106590
  • Yasuyama K, Salvaterra PM. Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech 1999; 45:65 - 79; http://dx.doi.org/10.1002/(SICI)1097-0029(19990415)45:2<65::AID-JEMT2>3.0.CO;2-0; PMID: 10332725
  • Salvaterra PM, Kitamoto T. Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. Brain Res Gene Expr Patterns 2001; 1:73 - 82; http://dx.doi.org/10.1016/S1567-133X(01)00011-4; PMID: 15018821
  • Kahsai L, Winther AM. Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 2011; 519:290 - 315; http://dx.doi.org/10.1002/cne.22520; PMID: 21165976
  • Bao X, Wang B, Zhang J, Yan T, Yang W, Jiao F, et al. Localization of serotonin/tryptophan-hydroxylase-immunoreactive cells in the brain and suboesophageal ganglion of Drosophila melanogaster. Cell Tissue Res 2010; 340:51 - 9; http://dx.doi.org/10.1007/s00441-010-0932-5; PMID: 20177707
  • Blenau W, Thamm M. Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. Arthropod Struct Dev 2011; 40:381 - 94; http://dx.doi.org/10.1016/j.asd.2011.01.004; PMID: 21272662
  • Monastirioti M. Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc Res Tech 1999; 45:106 - 21; http://dx.doi.org/10.1002/(SICI)1097-0029(19990415)45:2<106::AID-JEMT5>3.0.CO;2-3; PMID: 10332728
  • Drobysheva D, Ameel K, Welch B, Ellison E, Chaichana K, Hoang B, et al. An optimized method for histological detection of dopaminergic neurons in Drosophila melanogaster. J Histochem Cytochem 2008; 56:1049 - 63; http://dx.doi.org/10.1369/jhc.2008.951137; PMID: 18574253
  • Nässel DR, Elekes K. Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 1992; 267:147 - 67; http://dx.doi.org/10.1007/BF00318701; PMID: 1346506
  • Bate M, Martinez Arias A. The development of Drosophila melanogaster. Plainview, N.Y.: Cold Spring Harbor Laboratory Press, 1993.
  • Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L. Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem 2009; 16:289 - 95; http://dx.doi.org/10.1101/lm.1331809; PMID: 19389914
  • Fiala A. Olfaction and olfactory learning in Drosophila: recent progress. Curr Opin Neurobiol 2007; 17:720 - 6; http://dx.doi.org/10.1016/j.conb.2007.11.009; PMID: 18242976
  • Carlson JR. Olfaction in Drosophila: from odor to behavior. Trends Genet 1996; 12:175 - 80; http://dx.doi.org/10.1016/0168-9525(96)10015-9; PMID: 8984732
  • Masse NY, Turner GC, Jefferis GS. Olfactory information processing in Drosophila. Curr Biol 2009; 19:R700 - 13; http://dx.doi.org/10.1016/j.cub.2009.06.026; PMID: 19706282
  • Davis RL. Traces of Drosophila memory. Neuron 2011; 70:8 - 19; http://dx.doi.org/10.1016/j.neuron.2011.03.012; PMID: 21482352
  • Vosshall LB, Stocker RF. Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 2007; 30:505 - 33; http://dx.doi.org/10.1146/annurev.neuro.30.051606.094306; PMID: 17506643
  • Ebbs ML, Amrein H. Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugers Arch 2007; 454:735 - 47; http://dx.doi.org/10.1007/s00424-007-0246-y; PMID: 17473934
  • Lumpkin EA, Marshall KL, Nelson AM. The cell biology of touch. J Cell Biol 2010; 191:237 - 48; http://dx.doi.org/10.1083/jcb.201006074; PMID: 20956378
  • Kernan MJ. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch 2007; 454:703 - 20; http://dx.doi.org/10.1007/s00424-007-0263-x; PMID: 17436012