1,324
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Bacterial adaptation to the gut environment favors successful colonization

Microbial and metabonomic characterization of a simplified microbiota mouse model

, , , , , , & show all
Pages 307-318 | Published online: 01 Nov 2011

References

  • Kawaguchi-Miyashita M, Nanno M, Shimada S, Nagaoka N, Okada Y, Matsumoto S, et al. A step-wise expansion of intestinal intraepithelial T lymphocytes in association with microbial colonization is defined by sensitivity to cyclosporin A. Immunology 1997; 91:628 - 34; http://dx.doi.org/10.1046/j.1365-2567.1997.00292.x; PMID: 9378505
  • Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limited humoral mucosal immune response wile permanently colonizing the gut. Infect Immun 1995; 63:3904 - 13; PMID: 7558298
  • Syed SA, Abrams GD, Freter R. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germfree mice. Infect Immun 1970; 2:376 - 86; PMID: 16557849
  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 1999; 96:9833 - 8; http://dx.doi.org/10.1073/pnas.96.17.9833; PMID: 10449780
  • Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 1977; 34:529 - 33; PMID: 563214
  • Englyst HN, Macfarlane GT. Breakdown of resistant and readily digestible starch by human gut bacteria. J Sci Food Agric 1986; 37:699 - 706; http://dx.doi.org/10.1002/jsfa.2740370717
  • Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2:204; http://dx.doi.org/10.1016/j.chom.2007.08.002; PMID: 18030708
  • Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008; 453:620 - 5; http://dx.doi.org/10.1038/nature07008; PMID: 18509436
  • Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997; 6:S43 - 5; http://dx.doi.org/10.1097/00008469-199703001-00009; PMID: 9167138
  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota controls inflammation in obese mice through a mechanism involving GLP-2 driven-changes in gut permeability. Gut 2009; 58:1091 - 103; http://dx.doi.org/10.1136/gut.2008.165886; PMID: 19240062
  • Kassie F, Rabot S, Kundi M, Chabicovsky M, Qin HM, Knasmuller S. Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3-methylimidazo [4,5-f]quinoline. Carcinogenesis 2001; 22:1721 - 5; http://dx.doi.org/10.1093/carcin/22.10.1721; PMID: 11577015
  • Schaedler RW, Dubos R, Costello R. Association of germfree mice with bacteria isolated from normal mice. J Exp Med 1965; 122:77 - 82; http://dx.doi.org/10.1084/jem.122.1.77; PMID: 14325475
  • Orcutt RP, Gianni FJ, Judge RJ. Development of an ‘Altered Schaedler flora’ for NCI gnotobiotic rodents. Microecol Ther 1987; 17:59
  • Becker N, Kunath J, Loh G, Blaut M. Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2011; 2:25-33; PMID: 21637015
  • Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 2009; 6:279 - 89; http://dx.doi.org/10.1016/j.chom.2009.08.003; PMID: 19748469
  • Barc M-C, Charrin-Sarnel C, Rochet V, Bourlioux F, Sandre C, Boureau H, et al. Molecular analysis of the digestive microbiota in a gnotobiotic mouse model during antibiotic treatment: influence of Saccharomyces boulardii. Anaerobe 2008; 14:229 - 33; http://dx.doi.org/10.1016/j.anaerobe.2008.04.003; PMID: 18511310
  • Hirayama K, Miyaji K, Kawamura S, Itoh K, Takahashi E, Mitsuoka T. Development of intestinal flora of human-flora-associated (HFA) mice in the intestine of their offspring. Exp Anim 1995; 44:219 - 22; http://dx.doi.org/10.1538/expanim.44.219; PMID: 7556423
  • Imaoka A, Setoyama H, Takagi A, Matsumoto S, Umesaki Y. Improvement of human faecal flora-associated mouse model for evaluation of the functional foods. J Appl Microbiol 2004; 96:656 - 63; http://dx.doi.org/10.1111/j.1365-2672.2004.02189.x; PMID: 15012802
  • Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al. Characterizing a model huma gut microbiota composed of members of its two dominant bacteria phyla. Proc Natl Acad Sci USA 2009; 106:5859 - 64; http://dx.doi.org/10.1073/pnas.0901529106; PMID: 19321416
  • Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 2007; 3:112; http://dx.doi.org/10.1038/msb4100153; PMID: 17515922
  • Pang X, Hua X, Yang Q, Ding D, Che C, Cui L, et al. Inter-species transplantation of gut microbiota form human to pigs. ISME J 2007; 1:156 - 62; http://dx.doi.org/10.1038/ismej.2007.23; PMID: 18043625
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1:ra14; http://dx.doi.org/10.1126/scitranslmed.3000322; PMID: 20368178
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29:1181 - 9; http://dx.doi.org/10.1080/004982599238047; PMID: 10598751
  • Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin FP, et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 2008; 4:219; http://dx.doi.org/10.1038/msb.2008.56; PMID: 18854818
  • Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2011; 2:e00271 - 10; http://dx.doi.org/10.1128/mBio.00271-10; PMID: 21363910
  • Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 2006; 103:12511 - 6; http://dx.doi.org/10.1073/pnas.0601056103; PMID: 16895997
  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355 - 9; http://dx.doi.org/10.1126/science.1124234; PMID: 16741115
  • Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 2008; 4:157; http://dx.doi.org/10.1038/msb4100190; PMID: 18197175
  • Martin FP, Wang Y, Sprenger N, Yap IK, Rezzi S, Ramadan Z, et al. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol Syst Biol 2008; 4:205; http://dx.doi.org/10.1038/msb.2008.40; PMID: 18628745
  • Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y, et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 2008; 7:3718 - 28; http://dx.doi.org/10.1021/pr700864x; PMID: 18698804
  • Le Blay G, Lacroix C, Zihler A, Fliss I. In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 2007; 45:252 - 7; http://dx.doi.org/10.1111/j.1472-765X.2007.02178.x; PMID: 17718835
  • Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 2007; 56:661 - 7; http://dx.doi.org/10.1136/gut.2006.100164; PMID: 17047098
  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68:5186 - 90; http://dx.doi.org/10.1128/AEM.68.10.5186-5190.2002; PMID: 12324374
  • Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 2004; 70:7220 - 8; http://dx.doi.org/10.1128/AEM.70.12.7220-7228.2004; PMID: 15574920
  • Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci USA 2003; 100:10452 - 9; http://dx.doi.org/10.1073/pnas.1734063100; PMID: 12923294
  • Dubos RJ, Schaedler RW. The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 1960; 111:407 - 17; http://dx.doi.org/10.1084/jem.111.3.407; PMID: 13724628
  • van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 1989; 43:69 - 87; http://dx.doi.org/10.1146/annurev.micro.43.1.69; PMID: 2679366
  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122:107 - 18; http://dx.doi.org/10.1016/j.cell.2005.05.007; PMID: 16009137
  • Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 2002; 99:15451 - 5; http://dx.doi.org/10.1073/pnas.202604299; PMID: 12432102
  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101:15718 - 23; http://dx.doi.org/10.1073/pnas.0407076101; PMID: 15505215
  • Gustafsson BE. Vitamin K deficiency in germfree rats. Ann N Y Acad Sci 1959; 78:166 - 74; http://dx.doi.org/10.1111/j.1749-6632.1959.tb53101.x; PMID: 13830426
  • Denou E, Rezzonico E, Panoff JM, Arigoni F, Brüssow H. A mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut. DNA Cell Biol 2009; 28:413 - 22; http://dx.doi.org/10.1089/dna.2009.0873; PMID: 19534605
  • Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun 2009; 77:2876 - 86; http://dx.doi.org/10.1128/IAI.00059-09; PMID: 19364832
  • Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307:1955 - 9; http://dx.doi.org/10.1126/science.1109051; PMID: 15790854
  • Sonnenburg JL, Angenent LT, Gordon JI. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine?. Nat Immunol 2004; 5:569 - 73; http://dx.doi.org/10.1038/ni1079; PMID: 15164016
  • Bugaut M, Bentejac M. Biological effects of short-chain fatty acids in nonruminant mammals. Annu Rev Nutr 1993; 13:217 - 41; http://dx.doi.org/10.1146/annurev.nu.13.070193.001245; PMID: 8369146
  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40:235 - 43; http://dx.doi.org/10.1097/00004836-200603000-00015; PMID: 16633129
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361:512 - 9; http://dx.doi.org/10.1016/S0140-6736(03)12489-0; PMID: 12583961
  • Velázquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol 1997; 427:123 - 34; PMID: 9361838
  • Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13:517 - 26; http://dx.doi.org/10.1016/j.cmet.2011.02.018; PMID: 21531334
  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65:4799 - 807; PMID: 10543789
  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294:1 - 8; http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x; PMID: 19222573
  • Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003; 62:67 - 72; http://dx.doi.org/10.1079/PNS2002207; PMID: 12740060
  • Roediger WE. Oxidative and synthetic functions of n-butyrate in colonocytes. Dis Colon Rectum 1992; 35:511 - 2; http://dx.doi.org/10.1007/BF02049412; PMID: 1568404
  • Li H, Xie Z, Lin J, Song H, Wang Q, Wang K, et al. Transcriptomic and metabonomic profiling of obesity-prone and obesity-resistant rats under high fat diet. J Proteome Res 2008; 7:4775 - 83; http://dx.doi.org/10.1021/pr800352k; PMID: 18828625
  • Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med 2011; 62:361 - 80; http://dx.doi.org/10.1146/annurev-med-012510-175505; PMID: 21226616
  • Loesche WJ. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. J Bacteriol 1969; 99:520 - 6; PMID: 5808078
  • Pleasants JR. Rearing germfree caesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 1959; 78:116 - 26; http://dx.doi.org/10.1111/j.1749-6632.1959.tb53099.x; PMID: 14433463
  • Strandberg K, Sedval G, Midtvedt T, Gustafsson BE. Effect of some biologically active amines on the cecum wall of germfree rats. Proc Soc Exp Biol Med 1966; 121:699 - 702; PMID: 5935571
  • Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 1971; 35:390 - 429; PMID: 4945725
  • Donowitz M, Binder HJ. Mechanism of fluid and electrolyte secretion in the GF rat cecum. Dig Dis Sci 1979; 24:551 - 9; http://dx.doi.org/10.1007/BF01489325; PMID: 456242
  • Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 2007; 19:59 - 69; http://dx.doi.org/10.1016/j.smim.2006.10.002; PMID: 17118672
  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881 - 93; http://dx.doi.org/10.1128/JB.00619-08; PMID: 18676672
  • Hungate RE. A Roll Tube Method for Cultivation of Strict Anaerobes. In: Norris JR, Ribbons DW, eds. Methods in Microbiology. New York: Academic Press, 1969: 117-132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.