656
Views
12
CrossRef citations to date
0
Altmetric
Special Focus Review

Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes

, &
Pages 27-36 | Received 16 Jun 2010, Accepted 28 Jun 2010, Published online: 01 Jan 2011

References

  • Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005; 23:447 - 485
  • Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 1994; 15:516 - 542
  • Eisenbarth GS. Prediction of type 1 diabetes: the natural history of the prediabetic period. Adv Exp Med Biol 2004; 552:268 - 290
  • Tisch R, McDevitt HO. Insulin-dependent diabetes mellitus. Cell 1996; 85:291 - 297
  • Bendelac A, Carnaud C, Boitard C, Bach JF. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med 1987; 166:823 - 832
  • Christianson SW, Shultz LD, Leiter EH. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 1993; 42:44 - 55
  • Miller BJ, Appel MC, O'Neil JJ, Wicker LS. Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol 1988; 140:52 - 58
  • Standifer NE, Burwell EA, Gersuk VH, Greenbaum CJ, Nepom GT. Changes in autoreactive T cell avidity during type 1 diabetes development. Clin Immunol 2009; 132:312 - 320
  • Velthuis JH, Unger WW, Abreu JR, Duinkerken G, Franken K, Peakman M, et al. Simultaneous detection of circulating autoreactive CD8+ T cells specific for different islet cell-associated epitopes using combinatorial MHC-multimers. Diabetes 2010; [Epub ahead of print]
  • Coppieters KT, von Herrath MG. Histopathology of type 1 diabetes: old paradigms and new insights. Rev Diabet Stud 2009; 6:85 - 96
  • Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004; 113:451 - 463
  • Todd JA, Wicker LS. Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 2001; 15:387 - 395
  • Sarvetnick N. Etiology of autoimmunity. Immunol Res 2000; 21:357 - 362
  • Benoist C, Mathis D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?. Nat Immunol 2001; 2:797 - 801
  • Tisch R, Wang B. Dysregulation of T peripheral tolerance in type 1 diabetes. Adv Immunol 2008; 100:125 - 149
  • Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 2005; 54:1407 - 1414
  • Fox CJ, Danska JS. IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. J Immunol 1997; 158:2414 - 2424
  • Gregori S, Giarratana N, Smiroldo S, Adorini L. Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 2003; 171:4040 - 4047
  • Herman AE, Freeman GJ, Mathis D, Benoist C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med 2004; 199:1479 - 1489
  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 2005; 54:92 - 99
  • Pop SM, Wong CP, Culton DA, Clarke SH, Tisch R. Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 2005; 201:1333 - 1346
  • Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006; 25:195 - 201
  • Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002; 346:1692 - 1698
  • Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005; 352:2598 - 2608
  • Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54:1763 - 1769
  • Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GS, Robinson P, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993; 366:69 - 72
  • Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366:72 - 75
  • Tisch R, Liblau RS, Yang XD, Liblau P, McDevitt HO. Induction of GAD65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic mice. Diabetes 1998; 47:894 - 899
  • Fife BT, Guleria I, Gubbels-Bupp M, Eagar TN, Tang Q, Bour-Jordan H, et al. Insulin-induced remission in new onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 2006; 203:2737 - 2747
  • Muir A, Peck A, Clare-Salzler M, Song YH, Cornelius J, Luchetta R, et al. Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-gamma transcription. J Clin Invest 1995; 95:628 - 634
  • Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest 1999; 104:189 - 194
  • Harrison LC, Honeyman MC, Steele CE, Stone NL, Sarugeri E, Bonifacio E, et al. Pancreatic beta cell function and immune response to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 2004; 27:2348 - 2355
  • Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial-Type 1. Diabetes Care 2005; 28:1068 - 1076
  • Orban T, Farkas K, Jalahej H, Kis J, Treszl A, Falk B, et al. Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun 2010; 34:408 - 415
  • Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M, et al. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008; 359:1909 - 1920
  • Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Eng J Med 2002; 346:1685 - 1691
  • Liblau RS, Pearson CI, Shokat K, Tisch R, Yang XD, McDevitt HO. High-dose soluble antigen: peripheral T-cell proliferation or apoptosis. Immunol Rev 1994; 142:193 - 208
  • Tisch R, McDevitt HO. Antigen-specific immunotherapy: is it a real possibility to combat T-cell-mediated autoimmunity?. Proc Natl Acad Sci USA 1994; 91:437 - 438
  • Harrison LC, Hafler DA. Antigen-specific therapy for autoimmune disease. Curr Opin Immunol 2000; 12:704 - 711
  • Fousteri G, Bresson D, von Herrath M. Rational development of antigen-specific therapies for type 1 diabetes. Adv Exp Med Biol 2007; 601:313 - 319
  • Luo X, Herold KC, Miller SD. Immunotherapy of Type 1 diabetes: Where are we and where should we be going?. Immunity 2010; 32:488 - 499
  • Wang B, Tisch R. Parameters influencing antigen-specific immunotherapy for Type 1 diabetes. Immunol Res 2008; 42:246 - 258
  • Staeva-Vieira T, Peakman M, von Herrath M. Translational mini-review series on type 1 diabetes: Immune-based therapeutic approaches for type 1 diabetes. Clin Exp Immunol 2007; 148:17 - 31
  • Tian J, Kaufman DL. Antigen-based therapy for the treatment of type 1 diabetes. Diabetes 2009; 58:1939 - 1946
  • Rapoport MJ, Jaramillo A, Zipris D, Lazarus AH, Serreze DV, Leiter EH, et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 1993; 178:87 - 99
  • Pennline KJ, Roque-Gaffney E, Monahan M. Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol 1994; 71:169 - 175
  • Tang Q, Adams JY, Penaranda C, Melli K, Piaggio E, Sgouroudis E, et al. Central role of defective interleukin-2 production in triggering islet autoimmune destruction. Immunity 2008; 28:687 - 697
  • Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531 - 562
  • Haller MJ, Gottlieb PA, Schatz DA. Type 1 diabetes intervention trials 2007: where are we and where are we going?. Curr Opin Endocrinol Diabetes Obes 2007; 14:283 - 287
  • Bougneres PF, Landais P, Boisson C, Carel JC, Frament N, Boitard C, et al. Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes 1990; 39:1264 - 1272
  • Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhi E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060 - 2069
  • Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med 1989; 320:550 - 554
  • Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J Immunol 2005; 175:633 - 639
  • Lu S, Wang S, Grimes-Serrano JM. Current Progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008; 7:175 - 191
  • Garren H, Steinman L. Fathman CG. DNA vaccination in the treatment of autoimmune disease. Biologic and Gene Therapy of Autoimmune Disease 2000; Basel Karger 203 - 216
  • Abdulhaqq SA, Weiner DB. DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 2008; 42:219 - 232
  • Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotech Adv 2009; 27:353 - 370
  • Feltquate DM, Heaney S, Webster RG, Robinson HL. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol 1997; 158:2278 - 2284
  • Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J. Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 20:3148 - 3154
  • Goudy KS, Wang B, Tisch R. Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes on nonobese diabetic mice. Clin Immunol 2008; 129:49 - 57
  • Ewert KK, Ahmad A, Bouxsein NF, Evans HM, Safinya CR. Non-viral gene delivery with cationic liposome-DNA complexes. Methods Mol Biol 2008; 433:159 - 175
  • Bodles-Brakhop AM, Heller R, Draghia-Akli R. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol Ther 2009; 17:585 - 592
  • Shigihara T, Shimada A, Oikawa Y, Yoneyama H, Kanazawa Y, Okubo Y, et al. CXCL10 DNA vaccination prevents spontaneous diabetes through enhanced β cell proliferation in NOD mice. J Immunol 2005; 175:8401 - 8408
  • Meagher C, Arreaza G, Peters A, Strathdee CA, Gilbert PA, Mi QS, et al. CCL4 protects from Type 1 diabetes by altering islet β cell-targeted inflammatory responses. Diabetes 2007; 56:809 - 817
  • Cameron MJ, Strathdee CA, Holmes KD, Arreaza GA, Dekaban GA, Delovitch TL. Biolistic-mediated interleukin 4 gene transfer prevents onset of Type 1 diabetes. Human Gene Ther 2000; 11:1647 - 1656
  • Nitta Y, Tashiro F, Tokui M, Shimada A, Takei I, Tabayashi K, et al. Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Human Gene Ther 1998; 9:1701 - 1707
  • Tisch R, Wang B, Weaver DJ, Liu B, Bui T, Arthos J, Serreze DV. Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. J Immunol 2001; 166:2122 - 2132
  • Seifarth C, Pop S, Liu B, Wong CP, Tisch R. More stringent conditions of plasmid DNA vaccination are required to protect grafted versus endogenous islets in nonobese diabetic mice. J Immunol 2003; 171:469 - 476
  • Pop SM, Wong CP, He Q, Wang Y, Wallet MA, Goudy KS, et al. The type and frequency of immunoregulatory CD4+ T-cells govern the efficacy of antigen-specific immunotherapy in nonobese diabetic mice. Diabetes 2007; 56:1395 - 1402
  • Piccirillo CA, Chang Y, Prud'homme GJ. TGFβ1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J Immunol 1998; 161:3950 - 3956
  • Prud'homme GJ, Chang Y. Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein. Gene Ther 1999; 6:771 - 777
  • Weaver DJ, Liu B, Tisch R. Plasmid DNAs encoding insulin and glutamic acid decarboxylase 65 have distinct effects on the progression of autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167:586 - 592
  • Bot A, Smith D, Bot S, Hughes A, Wolfe T, Wang L, et al. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2001; 167:2950 - 2955
  • Urbanek-Ruiz I, Ruiz PJ, Paragas V, Garren H, Steinman L, Fathman CG. Immunization with DNA encoding an immunodominant peptide of insulin prevents diabetes in NOD mice. Clin Immunol 2001; 100:164 - 171
  • Solvason N, Lou YP, Peters W, Evans E, Martinez J, Ramirez U, et al. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. J Immunol 2008; 181:8298 - 8307
  • Every AL, Kramer DR, Mannering SI, Lew AM, Harrison LC. Intranasal vaccination with proinsulin DNA induces regulatory CD4+ T cells that prevent experimental autoimmune diabetes. J Immunol 2006; 176:4608 - 4615
  • Quintana FJ, Rotem A, Carmi P, Cohen IR. Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60 kDa heat shock protein autoimmunity. J Immunol 2000; 165:6148 - 6155
  • Glinka Y, De PR, Croze F, Prud'homme GJ. Regulatory cytokine production stimulated by DNA vaccination against an altered form of glutamic acid decarboxylase 65 in nonobese diabetic mice. J Mol Med 2003; 81:175 - 184
  • Filippova M, Liu J, Escher A. Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice. DNA Cell Biol 2001; 20:175 - 181
  • Wolfe T, Bot A, Hughes A, Mohrle U, Rodrigo E, Jaume JC, et al. Endogenous expression levels of autoantigens influence success or failure of DNA immunizations to prevent type 1 diabetes: addition of IL-4 increases safety. Eur J Immunol 2002; 32:113 - 121
  • Glinka Y, Chang Y, Prud'homme GJ. Protective regulatory T cell generation in autoimmune diabetes by DNA covaccination with islet antigens and selective CTLA-4 ligand. Mol Ther 2006; 578 - 587
  • Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 2005; 23:611 - 620
  • Li AF, Escher A. Intradermal or oral delivery of GADencoding genetic vaccines suppress type 1 diabetes. DNA Cell Biol 2003; 22:227 - 232
  • Gottlieb P, Colman PG, Kipnes M, Ratner R, Aroda V, Rendell M, et al. Interim results of a phase I/II clinical trial of a DNA plasmid vaccine (BHT-3021) for type 1 diabetes 69th Annual Meeting of the American Diabetes Association June 5–9; 2009 New Orleans LA
  • Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nature Rev 2010; 8:62 - 73
  • Lasaro MO, Ertl HCJ. New insights on adenovirus as vaccine vectors. Mol Ther 2009; 17:1333 - 1339
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Micro Rev 2008; 21:583 - 593
  • Gray SJ, Samulski RJ. Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther 2008; 8:911 - 922
  • Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther 2008; 15:817 - 822
  • Mueller C, Flotte TR. Clinical therapy using recombinant adeno-associated virus vectors. Gene Ther 2008; 15:858 - 863
  • Ferrari FK, Samulski T, Shenk T, Samulski RJ. Secondstrand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70:3227 - 3234
  • Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003; 10:2105 - 2111
  • McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003; 10:2112 - 2118
  • McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16:1648 - 1656
  • Han G, Li Y, Wang J, Wang R, Chen G, Song L, et al. Active tolerance induction and prevention of autoimmune diabetes by immunogene therapy using recombinant adenoassociated virus expressing glutamic acid decarboxylase 65 peptide GAD(500-585). J Immunol 2005; 174:4516 - 4524
  • Han G, Wang R, Chen G, Wang J, Xu R, Feng J, et al. Gene delivery GAD 500 autoantigen by AAV serotype 1 prevented diabetes in NOD mice: transduction efficiency do not play important roles. Immunol Lett 2008; 115:110 - 116
  • Jindal RM, Karanam M, Shah R. Prevention of diabetes in the NOD mouse by intra-muscular injection of recombinant adeno-associated virus containing the preproinsulin II gene. Int J Exp Diabetes Res 2001; 2:129 - 138
  • Goudy K, Song S, Wasserfall C, Zhang YC, Kapturczak M, Muir A, et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc Natl Acad Sci USA 2001; 98:13913 - 13918
  • Goudy KS, Burkhardt BR, Wasserfall C, Song S, Campbell-Thompson ML, Brusko T, et al. Systemic overexpression of IL-10 induces CD4+CD25+ cell populations in vivo and ameliorates type 1 diabetes in nonobese diabetic mice in a dose-dependent fashion. J Immunol 2003; 171:2270 - 2278
  • Yang Z, Chen M, Wu R, Fialkow LB, Bromberg JS, McDuffie M, et al. Suppression of autoimmune diabetes by viral IL-10 gene transfer. J Immunol 2002; 168:6479 - 6485
  • Zhang YC, Pileggi A, Agarwal A, Molano RD, Powers M, Brusko T, et al. Adeno-associated virus-mediated IL-10 gene therapy inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice. Diabetes 2003; 52:708 - 716
  • Song S, Goudy K, Campbell-Thompson M, Wasserfall C, Scott-Jorgensen M, Wang J, et al. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther 2004; 11:181 - 186
  • Hu CM, Lin HH, Chiang MT, Chang PF, Chau LY. Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice. Diabetes 2007; 56:1240 - 1247
  • Grimstein C, Choi YK, Satoh M, Lu Y, Wang X, Campbell-Thompson M, et al. Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. J Gene Med 2010; 12:35 - 44
  • Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C, et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006; 55:875 - 884
  • Flotte T, Agarwal A, Wang J, Song S, Fenjves ES, Inverardi L, et al. Efficient ex vivo transduction of pancreatic islet cells with recombinant adeno-associated virus vectors. Diabetes 2001; 50:515 - 520
  • Kapturczak M, Zolotukhin S, Cross J, Pileggi A, Molano RD, Jorgensen M, et al. Transduction of human and mouse pancreatic islet cells using a bicistronic recombinant adeno-associated viral vector. Mol Ther 2002; 5:154 - 160
  • Prasad KM, Yang Z, Bleich D, Nadler JL. Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Ther 2000; 7:1553 - 1561
  • Rehman KK, Wang Z, Bottino R, Balamurugan AN, Trucco M, Li J, et al. Efficient gene delivery to human and rodent islets with double-stranded (ds) AAV-based vectors. Gene Ther 2005; 12:1313 - 1323
  • Michelfelder S, Kohlschutter J, Skorupa A, Pfennings S, Muller O, Kleinschmidt JA, et al. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS One 2009; 4:5122
  • Muller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003; 21:1040 - 1046
  • Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N, et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006; 13:683 - 693
  • Dodiya HB, Bjorklund T, Stansell J 3rd, Mandel RJ, Kirik D, Kordower JH. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 2010; 18:579 - 587
  • Grimm D, Zhou S, Nakai H, Thomas CE, Storm TA, Fuess S, et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 2003; 102:2412 - 2419
  • Rebuffat A, Harding CO, Ding Z, Thony B. Comparison of adeno-associated virus pseudotype 1, 2 and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 2010; 21:463 - 477
  • Rehman KK, Trucco M, Wang Z, Xiao X, Robbins PD. AAV8-mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Mol Ther 2008; 16:1409 - 1416
  • Riedel MJ, Gaddy DF, Asadi A, Robbins PD, Kieffer TJ. DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Ther 2010; 17:171 - 180
  • Giannoukakis N, Trucco M. Gene therapy for type 1 diabetes. Am J Ther 2005; 12:512 - 528
  • Crooke ST. Progress in antisense technology. Annu Rev Med 2004; 55:61 - 95
  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol 2010; 50:259 - 293
  • Machen J, Harnaha J, Lakomy R, Styche A, Trucco M, Giannoukakis N. Antisense oligonucleotides downregulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 2004; 173:4331 - 4341
  • Phillips B, Nylander K, Harnaha J, Machen J, Lakomy R, Styche A, et al. A microsphere-based vaccine prevents and reverses new-onset autoimmune diabetes. Diabetes 2008; 57:1544 - 1555
  • Garren H. A DNA vaccine for multiple sclerosis. Expert Opin Biol Ther 2008; 8:1539 - 1549
  • Ranasinghe C, Ramshaw IA. Genetic heterologous prime-boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2009; 8:1171 - 1181
  • Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von Herrath M. Genetic-induced variations in the GAD65 T cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 2010; 18:307 - 316
  • Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 2003; 9:1202 - 1208
  • Chatenoud L, Primo J, Bach JF. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 1997; 158:2947 - 2954
  • Ko KS, Lee M, Koh JJ, Kim SW. Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic miice. Mol Ther 2001; 4:313 - 316
  • Balasa B, Boehm BO, Fortnagel A, Karges W, Van Gunst K, Jung N, et al. Vaccination with glutamic acid decarboxylase plasmid DNA protects mice from spontaneous autoimmune diabetes and B7/CD28 costimulation circumvents that protection. Clin Immunol 2001; 99:241 - 252
  • Glinka Y, Pooter R, Croze F, Prud'homme GJ. Regulatory cytokine production stimulated by DNA vaccination against an altered form of glutamic acid decarboxylase 65 in nonobese diabetic mice. J Mol Med 2003; 81:175 - 184
  • Prud'homme GJ, Chang Y, Li X. Immunoinhibitory DNA vaccine protects against autoimmune diabetes through cDNA encoding a selective CTLA-4 (CD152) ligand. Human Gene Ther 2002; 13:395 - 406
  • Li A, Ojogho O, Franco E, Baron P, Iwaki Y, Escher A. Pro-apoptotic DNA vaccination ameliorates new onset of autoimmune diabetes in NOD mice and induces foxp3+ regulatory T cells in vitro. Vaccine 2006; 24:5036 - 5046
  • Yamada K, Moriyama H, Okumachi Y, Arai T, Kameno M, Kishi M, et al. Intravenous administration of proinsulin 1 or 2-expressing fiber-mutant recombinant adenovirus vector protects against the development of diabetes in NOD mice. Ann NY Acad Sci 2008; 1150:183 - 186
  • Fernandes JR, Duvivier-Kali VF, Keegan M, Hollister-Lock J, Omer A, Su S, et al. Transplantation of islets transduced with CTLA4-Ig and TGFbeta using adenovirus and lentivirus vectors. Transpl Immunol 2004; 13:191 - 200
  • Park L, Lee E, Lee S, Lim M, Hong H, Shin G, et al. TGFbeta plasmid construction and delivery for the prevention of type 1 diabetes. Ann N Y Acad Sci 2008; 1150:177 - 182
  • Luo X, Yang H, Kim IS, Saint-Hillaire F, Thomas DA, De BP, et al. Systemic transforming growth factor-beta1 gene therapy induced FoxP3+ regulatory cells, restores self-tolerance, and facilitates regeneration of beta cell function in overtly diabetic nonobese diabetic mice. Transplantation 2005; 79:1091 - 1096
  • Sakata M, Yasuda H, Moriyama H, Yamada K, Kotani R, Kurohara M, et al. Prevention of recurrent but not spontaneous autoimmune diabetes by transplanted NOD islets adenovirally transduced with immunomodulating molecules. Diabetes Res Clin Pract 2008; 80:352 - 359
  • Yasuda H, Nagata M, Arisawa K, Yoshida R, Fujihira K, Okamoto N, et al. Local expression of immunoregulatory IL-12p40 gene prolonged syngeneic islet graft survival in diabetic NOD mice. J Clin Invest 1998; 102:1807 - 1814
  • Smith DK, Korbutt GS, Suarez-Pinzon WL, Kao D, Rajotte RV, Elliott JF. Interleukin-4 or interleukin-10 expressed from adenovirus-transduced syngeneic islet grafts fails to prevent beta cell destruction in diabetic NOD mice. Transplantation 1997; 64:1040 - 1049
  • Cameron MJ, Arreaza GA, Waldhauser L, Gauldie J, Delovitch TL. Immunotherapy of spontaneous type 1 diabetes in nonobese diabetic mice by systemic interleukin-4 treatment employing adenovirus vector-mediated gene transfer. Gene Ther 2000; 7:1840 - 1846
  • Alexander AM, Crawford M, Bertera S, Rudert WA, Takikawa O, Robbins PD, et al. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 2002; 51:356 - 365
  • Panakanti R, Mahato RI. Bipartite vector encoding hVEGF and hIL-1Ra for ex vivo transduction into human islets. Mol Pharm 2009; 6:274 - 284
  • Panakanti R, Mahato RI. Bipartite adenoviral vector encoding hHGF and hIL-1Ra for improved human islet transplantation. Pharm Res 2009; 26:587 - 596
  • Narang AS, Sabek O, Gaber AO, Mahato RI. Co-expression of vascular endothelial growth factor and interleukin-1 receptor antagonist improves human islet survival and function 2006; 23:1970 - 1982
  • Kawamoto K, Tanemura M, Komoda H, Omori T, Fumimoto Y, Shimada K, et al. Adenoviral-mediated overexpression of membrane-bound human FasL and human decoy Fas protect pig islets against human CD8+ CTL-mediated cytotoxicity. Transplant Proc 2006; 38:3286 - 3288
  • Kawamoto K, Tanemura M, Saga A, Komoda H, Fumimoto Y, Deguchi T, et al. Adenoviral-mediated overexpression of either membrane-bound human FasL or human decoy Fas can prolong pig islet xenograft survival in a rat transplant model. Transplant Proc 2008; 40:477 - 479
  • Giannoukakis N, Mi Z, Rudert WA, Gambotto A, Trucco M, Robbins P. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther 2000; 7:2015 - 2022
  • Zhang YC, Molano RD, Pileggi A, Powers M, Cross J, Wasserfall C, et al. Adeno-associated virus transduction of islets with interleukin-4 results in impaired metabolic function in syngeneic marginal islet mass transplantation. Transplantation 2002; 74:1184 - 1186
  • Zhang YC, Pileggi A, Molano RD, Wasserfall C, Campbell-Thompson M, Ricordi C, et al. Systemic overexpression of interleukin-10 fails to protect allogeneic islet transplants in nonobese diabetic mice. Transplantation 2005; 80:530 - 533
  • Carter JD, Ellett JD, Chen M, Smith KM, Fialkow LB, McDuffie MJ, et al. Viral IL-10-mediated immune regulation in pancreatic islet transplantation. Mol Ther 2005; 12:360 - 368
  • Oh TK, Li MZ, Kim ST. Gene therapy for diabetes mellitus in rats by intramuscular injection of lentivirus containing insulin gene. Diabetes Res Clin Pract 2006; 71:233 - 240
  • Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther 1998; 18:2717 - 2726
  • Chou FC, Sytwu HK. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice. J Biomed Sci 2009; 16:71
  • Giannoukakis N, Mi Z, Gambotto A, Eramo A, Ricordi C, Trucco M, et al. Infection of intact human islets by a lentiviral vector. Gene Ther 1999; 6:1545 - 1551
  • Fenjves ES, Ochoa MS, Cechin S, Gay-Rabinstein C, Pérez-Alvarez I, Ichii H, et al. Protection of human pancreatic islets using a lentiviral vector expressing two genes: cFLIP and GFP. Cell Transplant 2008; 17:793 - 802

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.