2,218
Views
25
CrossRef citations to date
0
Altmetric
Review

Plant secretomics

Identification, isolation, and biological significance under environmental stress

, , , &
Article: e29426 | Received 25 Mar 2014, Accepted 02 Jun 2014, Published online: 03 Jun 2014

References

  • Isaacson T, Rose JK. Surveying the plant cell wall proteome or secretome. In: Plant Proteomics. Finnie C, ed. Annual Plant Rev Series 2006; 28: 185-209
  • Ellis JG, Dodds PN, Lawrence GJ. The role of secreted proteins in diseases of plants caused by rust, powdery mildew and smut fungi. Curr Opin Microbiol 2007; 10:326 - 31; http://dx.doi.org/10.1016/j.mib.2007.05.015; PMID: 17698407
  • Jung YH, Agrawal GK, Rakwal R, Jwa NS. Secretome – Toward deciphering the secretory pathways and beyond. In: Plant Proteomics: Technologies, Strategies, and Applications. Agrawal GK, Rakwal R, eds. New Jersey, USA: John Wiley and Sons, Inc, 2008; 83-89
  • Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. The secretome of the maize pathogen Ustilago maydis.. Fungal Genet Biol 2008; 1:63 - 70; http://dx.doi.org/10.1016/j.fgb.2008.03.012; PMID: 18456523
  • Tseng TT, Tyler BM, Setubal JC. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009; 9:2; http://dx.doi.org/10.1186/1471-2180-9-S1-S2; PMID: 19123944
  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515 - 47; http://dx.doi.org/10.1128/MMBR.64.3.515-547.2000; PMID: 10974125
  • Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers. J Proteomics 2010; 73:2291 - 305; http://dx.doi.org/10.1016/j.jprot.2010.07.001; PMID: 20637910
  • Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome: Unlocking secrets of the secreted protiens. Proteom 2010; 10:1 - 29; http://dx.doi.org/10.1002/pmic.200900514
  • Simpson JC, Mateos A, Pepperkok R. Maturation of the mammalian secretome. Genome Biol 2007; 8:211; http://dx.doi.org/10.1186/gb-2007-8-4-211; PMID: 17472737
  • Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteomics 2007; 4:239 - 48; http://dx.doi.org/10.1586/14789450.4.2.239; PMID: 17425459
  • Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. Interrelating different types of genomic data, from proteome to secretome: ’oming in on function. Genome Res 2001; 11:1463 - 8; http://dx.doi.org/10.1101/gr.207401; PMID: 11544189
  • Bouws H, Wattenberg A, Zorn H. Fungal secretomes--nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 2008; 80:381 - 8; http://dx.doi.org/10.1007/s00253-008-1572-5; PMID: 18636256
  • Lum G, Min XJ. Plant secretomes: current status and future prespectives. Plant Omics J 2011; a 4:114 - 9
  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408:796 - 815; http://dx.doi.org/10.1038/35048692; PMID: 11130711
  • Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. Trends Plant Sci 2012; 17:606 - 15; http://dx.doi.org/10.1016/j.tplants.2012.06.004; PMID: 22784825
  • Dupree P. The golgi bypassed. Trends Cell Biol 1999; 9:130; http://dx.doi.org/10.1016/S0962-8924(99)01533-0; PMID: 10203787
  • Drakakaki G, Dandekar A. Protein secretion: how many secretory routes does a plant cell have?. Plant Sci 2013; 203-204:74 - 8; http://dx.doi.org/10.1016/j.plantsci.2012.12.017; PMID: 23415330
  • Stigliano E, Faraco M, Neuhaus JM, Montefusco A, Dalessandro G, Piro G, Di Sansebastiano GP. Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. Plant Physiol Biochem 2013; 73:337 - 43; http://dx.doi.org/10.1016/j.plaphy.2013.10.010; PMID: 24184454
  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 2010; 22:4009 - 30; http://dx.doi.org/10.1105/tpc.110.080697; PMID: 21193573
  • Normann TC. Calcium-dependence of neurosecretion by exocytosis. J Exp Biol 1974; 61:401 - 9; PMID: 4443735
  • Presley JF. Imaging the secretory pathway: the past and future impact of live cell optical techniques. Biochim Biophys Acta 2005; 1744:259 - 72; http://dx.doi.org/10.1016/j.bbamcr.2005.04.010; PMID: 15921767
  • Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell 2004; 116:153 - 66; http://dx.doi.org/10.1016/S0092-8674(03)01079-1; PMID: 14744428
  • Agrawal GK, Rakwal R. Plant proteomics: Technologies, strategies, and applications. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2008
  • Volmer MW, Stühler K, Zapatka M, Schöneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5:2587 - 601; http://dx.doi.org/10.1002/pmic.200401188; PMID: 15912508
  • Alexandersson E, Ali A, Resjö S, Andreasson E. Plant secretome proteomics. Front Plant Sci 2013; 4:9; http://dx.doi.org/10.3389/fpls.2013.00009; PMID: 23378846
  • Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J Proteome Res 2008; b 7:5187 - 210; http://dx.doi.org/10.1021/pr8005149; PMID: 18986194
  • Klement Z. Method of obtaining fluid from the intercellular spaces of foliage and the fluid’s merit as substrate for phytobacterial pathogen. Phytopathology 1965; 55:1033 - 4
  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Hermann Muehling K. Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 2001; 111:457 - 65; http://dx.doi.org/10.1034/j.1399-3054.2001.1110405.x; PMID: 11299010
  • Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. Plant Cell Physiol 2012; 53:1659 - 68; http://dx.doi.org/10.1093/pcp/pcs102; PMID: 22813544
  • Ali A, Moushib LI, Lenman M, Levander F, Olsson K, Carlson-Nilson U, Zoteyeva N, Liljeroth E, Andreasson E. Paranoid potato: phytophthora-resistant genotype shows constitutively activated defense. Plant Signal Behav 2012; 7:400 - 8; http://dx.doi.org/10.4161/psb.19149; PMID: 22476463
  • Terry ME, Bonner BA. An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid induced growth. Plant Physiol 1980; 66:321 - 5; http://dx.doi.org/10.1104/pp.66.2.321; PMID: 16661430
  • Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.. Proteomics 2007; 7:3171 - 83; http://dx.doi.org/10.1002/pmic.200700184; PMID: 17676664
  • Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, et al. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 2010; 11:674; http://dx.doi.org/10.1186/1471-2164-11-674; PMID: 21114852
  • Song Y, Zhang C, Ge W, Zhang Y, Burlingame AL, Guo Y. Identification of NaCl stress-responsive apoplastic proteins in rice shoot stems by 2D-DIGE. J Proteomics 2011; 74:1045 - 67; http://dx.doi.org/10.1016/j.jprot.2011.03.009; PMID: 21420516
  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443 - 64; http://dx.doi.org/10.1021/pr901098p; PMID: 20433195
  • Bhushan D, Jaiswal DK, Ray D, Basu D, Datta A, Chakraborty S, Chakraborty N. Dehydration-responsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. J Proteome Res 2011; 10:2027 - 46; http://dx.doi.org/10.1021/pr200010f; PMID: 21348435
  • Gupta S, Wardhan V, Verma S, Gayali S, Rajamani U, Datta A, Chakraborty S, Chakraborty N. Characterization of the secretome of chickpea suspension culture reveals pathway abundance and the expected and unexpected secreted proteins. J Proteome Res 2011; 10:5006 - 15; http://dx.doi.org/10.1021/pr200493d; PMID: 21923182
  • Zhou L, Bokhari SA, Dong CJ, Liu JY. Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 2011; 6:e16723; http://dx.doi.org/10.1371/journal.pone.0016723; PMID: 21347307
  • Maeder M, Schloss P. Isolation of malate dehydrogenase from cell walls of Nicotiana tabaccum.. Plant Sci Lett 1979; 17:75 - 80; http://dx.doi.org/10.1016/0304-4211(79)90164-0
  • Li ZC, McClure JW, Hagerman AE. Soluble and bound apoplastic activity for peroxidase, X-D-glucosidase, malate dehydrogenase, and nonspecific arylesterase, in barley (Hordeum vulgare L.) and oat (Avena sativa L.) primary leaves. Plant Physiol 1989; 90:185 - 90; http://dx.doi.org/10.1104/pp.90.1.185; PMID: 16666733
  • Dannel FP. Isolation of apolasmic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplasmic pH. J Plant Physiol 1995; 146:273 - 8; http://dx.doi.org/10.1016/S0176-1617(11)82053-5
  • Schulze WX, Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 2010; 61:491 - 516; http://dx.doi.org/10.1146/annurev-arplant-042809-112132; PMID: 20192741
  • Yao X. Derivatization or not: a choice in quantitative proteomics. Anal Chem 2011; 83:4427 - 39; http://dx.doi.org/10.1021/ac200925p; PMID: 21495688
  • Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 2011; 11:535 - 53; http://dx.doi.org/10.1002/pmic.201000553; PMID: 21243637
  • Kaffarnik FA, Jones AM, Rathjen JP, Peck SC. Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana.. Mol Cell Proteomics 2009; 8:145 - 56; http://dx.doi.org/10.1074/mcp.M800043-MCP200; PMID: 18716313
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006; 5:573 - 88; http://dx.doi.org/10.1074/mcp.M500331-MCP200; PMID: 16332733
  • Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1229 - 39; http://dx.doi.org/10.1016/j.jchromb.2008.11.013; PMID: 19041286
  • Sweet love LJ, Moller IM. Oxidation of proteins in plants mechanisms and consequences. Adv Bot Res 2009; 52:1 - 23; http://dx.doi.org/10.1016/S0065-2296(10)52001-9
  • Madian AG, Regnier FE. Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 2010; 9:3766 - 80; http://dx.doi.org/10.1021/pr1002609; PMID: 20521848
  • Lindermayr C, Saalbach G, Durner J. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 2005; 137:921 - 30; http://dx.doi.org/10.1104/pp.104.058719; PMID: 15734904
  • Hawkins CL, Morgan PE, Davies MJ. Quantification of protein modification by oxidants. Free Radic Biol Med 2009; 46:965 - 88; http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.007; PMID: 19439229
  • Wen F, VanEtten HD, Tsaprailis G, Hawes MC. Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 2007; 143:773 - 83; http://dx.doi.org/10.1104/pp.106.091637; PMID: 17142479
  • Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785 - 6; http://dx.doi.org/10.1038/nmeth.1701; PMID: 21959131
  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997; 10:1 - 6; http://dx.doi.org/10.1093/protein/10.1.1; PMID: 9051728
  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783 - 95; http://dx.doi.org/10.1016/j.jmb.2004.05.028; PMID: 15223320
  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300:1005 - 16; http://dx.doi.org/10.1006/jmbi.2000.3903; PMID: 10891285
  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007; 2:953 - 71; http://dx.doi.org/10.1038/nprot.2007.131; PMID: 17446895
  • Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD. Absolute protein quantification by LC/MS(E) for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 2009; 8:82 - 93; http://dx.doi.org/10.1021/pr800649s; PMID: 18998720
  • Goldberg T, Hamp T, Rost B. LocTree2 predicts localization for all domains of life. Bioinformatics 2012; 28:i458 - 65; http://dx.doi.org/10.1093/bioinformatics/bts390; PMID: 22962467
  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH. SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 2007; 35:D213 - 8; http://dx.doi.org/10.1093/nar/gkl863; PMID: 17071959
  • Lum G, Min XJ. FunSecKB: the Fungal Secretome Knowledge Base. Database - the J Biol Data Curat 2011b. doi: http://dx.doi.org/10.1093/database/bar001
  • Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001; 17:646 - 53; http://dx.doi.org/10.1093/bioinformatics/17.7.646; PMID: 11448883
  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 2004; 16:3285 - 303; http://dx.doi.org/10.1105/tpc.104.027078; PMID: 15539469
  • Caccia D, Dugo M, Callari M, Bongarzone I. Bioinformatics tools for secretome analysis. Biochim Biophys Acta 2013; 1834:2442 - 53; http://dx.doi.org/10.1016/j.bbapap.2013.01.039; PMID: 23395702
  • Ahmad P, Hameed A, Abd-Allah EF, Sheikh SA, Wani MR, Rasool S, Jamsheed S, Kumar A. Biochemical and Molecular Approaches for Drought Tolerance in Plants. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment vol II. Ahmad P, Wani MR, eds. Springer: 2014, 1-29
  • Ahmad P, Sharma S, Srivastava PS. Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro.. Physiol Mol Biol Plants 2006; 12:59 - 66
  • Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 2008; 51:167 - 73; http://dx.doi.org/10.1007/BF03030694
  • Ahmad P, Jeleel CA, Azooz MM, Nabi G. Generation of ROS and non-enzymatic antioxidants during abiotic stress in Plants. Botany Res Int 2009; 2:11 - 20
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 2010; a 30:161 - 75; http://dx.doi.org/10.3109/07388550903524243; PMID: 20214435
  • Ahmad P, Jaleel CA, Sharma S. Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and Biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 2010; b 57:509 - 17; http://dx.doi.org/10.1134/S1021443710040084
  • Ahmad P, Nabi G, Ashraf M. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 2011; 77:36 - 44; http://dx.doi.org/10.1016/j.sajb.2010.05.003
  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA. Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 2012; a 11:2694 - 703
  • Ahmad P, Ozturk M, Gucel S. Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (L) plants. Fresenius Environmental Bulletin 2012; b 21:2953 - 61
  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea.. J Plant Interact 2014; 9:1 - 9
  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 2009; 149:916 - 28; http://dx.doi.org/10.1104/pp.108.131144; PMID: 19036832
  • Gupta R, Deswal R. Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 2012; 11:2684 - 96; http://dx.doi.org/10.1021/pr200944z; PMID: 22486727
  • Wang Y, Wu J, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. J Proteome Res 2011; 10:3136 - 48; http://dx.doi.org/10.1021/pr200202m; PMID: 21563842
  • Goulet C, Goulet C, Goulet MC, Michaud D. 2-DE proteome maps for the leaf apoplast of Nicotiana benthamiana. Proteomics 2010; 10:2536 - 44; http://dx.doi.org/10.1002/pmic.200900382; PMID: 20422621
  • Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kües U, Polle A. Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana.. PLoS One 2012; 7:e31435; http://dx.doi.org/10.1371/journal.pone.0031435; PMID: 22363647
  • Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H, Terauchi R. Use of intercellular washing fluid to investigate the secreted proteome of the rice-Magnaporthe interaction. J Plant Res 2012; 125:311 - 6; http://dx.doi.org/10.1007/s10265-012-0473-y; PMID: 22246111
  • Vance C, Stone CU, Allan DU. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 2003; 157:427 - 47; http://dx.doi.org/10.1046/j.1469-8137.2003.00695.x
  • Tran HT, Plaxton WC. Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 2008; 8:4317 - 26; http://dx.doi.org/10.1002/pmic.200800292; PMID: 18814331
  • Kusumawati L, Imin N, Djordjevic MA. Characterization of the secretome of suspension cultures of Medicago species reveals proteins important for defense and development. J Proteome Res 2008; 7:4508 - 20; http://dx.doi.org/10.1021/pr800291z; PMID: 18781796
  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola.. Plant Cell 2005; 17:2832 - 47; http://dx.doi.org/10.1105/tpc.105.034819; PMID: 16126835
  • Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochem Biophys Res Commun 2009; 379:1038 - 42; http://dx.doi.org/10.1016/j.bbrc.2009.01.006; PMID: 19146828
  • Martinez-Esteso MJ, Sellés-Marchart S, Vera-Urbina JC, Pedreño MA, Bru-Martinez R. Changes of defense proteins in the extracellular proteome of grapevine (Vitis vinifera cv. Gamay) cell cultures in response to elicitors. J Proteomics 2009; 73:331 - 41; http://dx.doi.org/10.1016/j.jprot.2009.10.001; PMID: 19822229
  • Briceño Z, Almagro L, Sabater-Jara AB, Calderón AA, Pedreño MA, Ferrer MA. Enhancement of phytosterols, taraxasterol and induction of extracellular pathogenesis-related proteins in cell cultures of Solanum lycopersicum cv Micro-Tom elicited with cyclodextrins and methyl jasmonate. J Plant Physiol 2012; 169:1050 - 8; http://dx.doi.org/10.1016/j.jplph.2012.03.008; PMID: 22608078
  • Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 2009; 9:1302 - 13; http://dx.doi.org/10.1002/pmic.200800589; PMID: 19253284
  • Casasoli M, Spadoni S, Lilley KS, Cervone F, De Lorenzo G, Mattei B. Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana.. Proteomics 2008; 8:1042 - 54; http://dx.doi.org/10.1002/pmic.200700523; PMID: 18324730
  • Xia Y. Proteases in pathogenesis and plant defence. Cell Microbiol 2004; 6:905 - 13; http://dx.doi.org/10.1111/j.1462-5822.2004.00438.x; PMID: 15339266
  • Antão CM, Malcata FX. Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem 2005; 43:637 - 50; http://dx.doi.org/10.1016/j.plaphy.2005.05.001; PMID: 16006138
  • Delannoy M, Alves G, Vertommen D, Ma J, Boutry M, Navarre C. Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 2008; 8:2285 - 98; http://dx.doi.org/10.1002/pmic.200700507; PMID: 18446799
  • Rehman R, Rinalducci S, Zolla L, Dalessandro G, Sansebastiano GPD. Nicotinia tabacum protoplasts secretome can evidence relations among regulatory elements of exocytosis mechanisms. Plant Signal Behav 2011; 4:1140 - 5; http://dx.doi.org/10.4161/psb.6.8.15750
  • Bauer WD. Infection of legumes by rhizobia. Annu Rev Plant Physiol 1981; 32:407 - 49; http://dx.doi.org/10.1146/annurev.pp.32.060181.002203
  • De-la-Pena M, Vivanco Jorge. Root-Microbe Interactions: The importance of protein secretion. Curr Proteom 2010; 7:265 - 74; http://dx.doi.org/10.2174/157016410793611819
  • De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM. Root-microbe communication through protein secretion. J Biol Chem 2008; 283:25247 - 55; http://dx.doi.org/10.1074/jbc.M801967200; PMID: 18635546
  • Shinano T, Komatsu S, Yoshimura T, Tokutake S, Kong FJ, Watanabe T, Wasaki J, Osaki M. Proteomic analysis of secreted proteins from aseptically grown rice. Phytochemistry 2011; 72:312 - 20; http://dx.doi.org/10.1016/j.phytochem.2010.12.006; PMID: 21255809
  • Ma W, Muthreich N, Liao C, Franz-Wachtel M, Schütz W, Zhang F, Hochholdinger F, Li C. The mucilage proteome of maize (Zea mays L.) primary roots. J Proteome Res 2010; 9:2968 - 76; http://dx.doi.org/10.1021/pr901168v; PMID: 20408568
  • Konozy EH, Rogniaux H, Causse M, Faurobert M. Proteomic analysis of tomato (Solanum lycopersicum) secretome. J Plant Res 2013; 126:251 - 66; http://dx.doi.org/10.1007/s10265-012-0516-4; PMID: 22892874
  • Ligat L, Lauber E, Albenne C, San Clemente H, Valot B, Zivy M, Pont-Lezica R, Arlat M, Jamet E. Analysis of the xylem sap proteome of Brassica oleracea reveals a high content in secreted proteins. Proteomics 2011; 11:1798 - 813; http://dx.doi.org/10.1002/pmic.201000781; PMID: 21413152
  • Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, de Dios Alché J, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate. J Exp Bot 2013; 64:5695 - 705; http://dx.doi.org/10.1093/jxb/ert345; PMID: 24151302

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.