88,479
Views
349
CrossRef citations to date
0
Altmetric
Review

Developing mRNA-vaccine technologies

, , &
Pages 1319-1330 | Published online: 12 Oct 2012

References

  • Sorrentino S. Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 1998; 54:785 - 94; http://dx.doi.org/10.1007/s000180050207; PMID: 9760987
  • Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A 1989; 86:6077 - 81; http://dx.doi.org/10.1073/pnas.86.16.6077; PMID: 2762315
  • Hilleman MR. Recombinant vector vaccines in vaccinology. Dev Biol Stand 1994; 82:3 - 20; PMID: 7958480
  • Liu MA. Immunologic basis of vaccine vectors. Immunity 2010; 33:504 - 15; http://dx.doi.org/10.1016/j.immuni.2010.10.004; PMID: 21029961
  • Pascolo S. Vaccination with messenger RNA. Methods Mol Med 2006; 127:23 - 40; PMID: 16988444
  • Jäschke A, Helm M. RNA sex. Chem Biol 2003; 10:1148 - 50; http://dx.doi.org/10.1016/j.chembiol.2003.12.003; PMID: 14700622
  • Chetverin AB. Replicable and recombinogenic RNAs. FEBS Lett 2004; 567:35 - 41; http://dx.doi.org/10.1016/j.febslet.2004.03.066; PMID: 15165890
  • Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther 2007; 14:1175 - 80; http://dx.doi.org/10.1038/sj.gt.3302964; PMID: 17476302
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, Pfeiffer R, Ojkić-Zrna S, Probst J, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011; 34:1 - 15; http://dx.doi.org/10.1097/CJI.0b013e3181f7dbe8; PMID: 21150709
  • Kaslow DC. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases. Trans R Soc Trop Med Hyg 2004; 98:593 - 601; http://dx.doi.org/10.1016/j.trstmh.2004.03.007; PMID: 15289096
  • Krieg PA, Melton DA. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 1984; 12:7057 - 70; http://dx.doi.org/10.1093/nar/12.18.7057; PMID: 6207484
  • Banerjee AK. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol Rev 1980; 44:175 - 205; PMID: 6247631
  • Wickens M. How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci 1990; 15:277 - 81; http://dx.doi.org/10.1016/0968-0004(90)90054-F; PMID: 1974368
  • Konarska MM, Padgett RA, Sharp PA. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 1984; 38:731 - 6; http://dx.doi.org/10.1016/0092-8674(84)90268-X; PMID: 6567484
  • Munroe D, Jacobson A. mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol 1990; 10:3441 - 55; PMID: 1972543
  • Gong P, Martin CT. Mechanism of instability in abortive cycling by T7 RNA polymerase. J Biol Chem 2006; 281:23533 - 44; http://dx.doi.org/10.1074/jbc.M604023200; PMID: 16790422
  • Schenborn ET, Mierendorf RC Jr.. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 1985; 13:6223 - 36; http://dx.doi.org/10.1093/nar/13.17.6223; PMID: 2995921
  • Arnaud-Barbe N, Cheynet-Sauvion V. Oriol G, Mandrand B, Mallet F. Transcription of RNA templates by T7 RNA polymerase. Nucleic Acids Res 1998; 26:3550 - 4; http://dx.doi.org/10.1093/nar/26.15.3550; PMID: 9671817
  • Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther 2004; 4:1285 - 94; http://dx.doi.org/10.1517/14712598.4.8.1285; PMID: 15268662
  • Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011; 39:e142; http://dx.doi.org/10.1093/nar/gkr695; PMID: 21890902
  • Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5:2108 - 16; http://dx.doi.org/10.1101/gad.5.11.2108; PMID: 1682219
  • Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004; 11:121 - 7; http://dx.doi.org/10.1038/nsmb724; PMID: 14749774
  • Yamashita A, Chang T-C, Yamashita Y, Zhu W, Zhong Z, Chen C-YA, et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12:1054 - 63; http://dx.doi.org/10.1038/nsmb1016; PMID: 16284618
  • Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 1989; 9:5134 - 42; PMID: 2601712
  • Kozak M. A short leader sequence impairs the fidelity of initiation by eukaryotic ribosomes. Gene Expr 1991; 1:111 - 5; PMID: 1820208
  • Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 2003; 28:182 - 8; http://dx.doi.org/10.1016/S0968-0004(03)00051-3; PMID: 12713901
  • Wang Z, Day N, Trifillis P, Kiledjian M.. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 1999; 19:4552 - 60
  • Ross J. mRNA stability in mammalian cells. Microbiol Rev 1995; 59:423 - 50; PMID: 7565413
  • Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles?. Nucleic Acids Res 2005; 33:7138 - 50; http://dx.doi.org/10.1093/nar/gki1012; PMID: 16391004
  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA 2009; 15:21 - 32; http://dx.doi.org/10.1261/rna.1399509; PMID: 19029310
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466:835 - 40; http://dx.doi.org/10.1038/nature09267; PMID: 20703300
  • Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3’UTRs. PLoS One 2011; 6:e18067; http://dx.doi.org/10.1371/journal.pone.0018067; PMID: 21445367
  • Pasquinelli AE, Dahlberg JE, Lund E. Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1995; 1:957 - 67; PMID: 8548660
  • Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 2001; 7:1486 - 95; PMID: 11680853
  • Venkatesan S, Gershowitz A, Moss B. Modification of the 5′ end of mRNA. Association of RNA triphosphatase with the RNA guanylyltransferase-RNA (guanine-7-)methyltransferase complex from vaccinia virus. J Biol Chem 1980; 255:903 - 8; PMID: 6243301
  • Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E, Rhoads RE. Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 2006; 281:1857 - 67; http://dx.doi.org/10.1074/jbc.M509121200; PMID: 16257956
  • Zohra FT, Chowdhury EH, Tada S, Hoshiba T, Akaike T. Effective delivery with enhanced translational activity synergistically accelerates mRNA-based transfection. Biochem Biophys Res Commun 2007; 358:373 - 8; http://dx.doi.org/10.1016/j.bbrc.2007.04.059; PMID: 17475211
  • Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70:9053 - 61; http://dx.doi.org/10.1158/0008-5472.CAN-10-2880; PMID: 20926399
  • Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, et al. Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety--fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem 2012; 20:1699 - 710; http://dx.doi.org/10.1016/j.bmc.2012.01.013; PMID: 22316555
  • Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 2007; 13:1745 - 55; http://dx.doi.org/10.1261/rna.701307; PMID: 17720878
  • Peng J, Schoenberg DR. mRNA with a <20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA. 2005; 11:1131-40.
  • Elango N, Elango S, Shivshankar P, Katz MS. Optimized transfection of mRNA transcribed from a d(A/T)100 tail-containing vector. Biochem Biophys Res Commun 2005; 330:958 - 66; http://dx.doi.org/10.1016/j.bbrc.2005.03.067; PMID: 15809089
  • Carralot J-P, Weide B, Schoor O, Probst J, Scheel B, Teufel R, et al. Production and characterization of amplified tumor-derived cRNA libraries to be used as vaccines against metastatic melanomas. Genet Vaccines Ther 2005; 3:6; http://dx.doi.org/10.1186/1479-0556-3-6; PMID: 16115316
  • Kreiter S, Selmi A, Diken M, Sebastian M, Osterloh P, Schild H, et al. Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 2008; 180:309 - 18; PMID: 18097032
  • Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010; 70:9031 - 40; http://dx.doi.org/10.1158/0008-5472.CAN-10-0699; PMID: 21045153
  • Gallie DR, Tanguay RL, Leathers V. The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 1995; 165:233 - 8; http://dx.doi.org/10.1016/0378-1119(95)00521-7; PMID: 8522182
  • Karikó K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012; 20:948 - 53; http://dx.doi.org/10.1038/mt.2012.7; PMID: 22334017
  • Vivinus S, Baulande S, van Zanten M, Campbell F, Topley P, Ellis JH, et al. An element within the 5′ untranslated region of human Hsp70 mRNA which acts as a general enhancer of mRNA translation. Eur J Biochem 2001; 268:1908 - 17; http://dx.doi.org/10.1046/j.1432-1327.2001.02064.x; PMID: 11277913
  • Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 2010; 394:189 - 93; http://dx.doi.org/10.1016/j.bbrc.2010.02.150; PMID: 20188704
  • Tan X, Wan Y. Enhanced protein expression by internal ribosomal entry site-driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens. Hum Immunol 2008; 69:32 - 40; http://dx.doi.org/10.1016/j.humimm.2007.11.009; PMID: 18295673
  • Goodarzi H, Najafabadi HS, Oikonomou P, Greco TM, Fish L, Salavati R, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 2012; 485:264 - 8; http://dx.doi.org/10.1038/nature11013; PMID: 22495308
  • Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 2001; 53:290 - 8; http://dx.doi.org/10.1007/s002390010219; PMID: 11675589
  • Duret L. Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 2002; 12:640 - 9; http://dx.doi.org/10.1016/S0959-437X(02)00353-2; PMID: 12433576
  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 1986; 44:283 - 92; http://dx.doi.org/10.1016/0092-8674(86)90762-2; PMID: 3943125
  • Liu Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 2005; 81:281 - 9; http://dx.doi.org/10.1016/j.biosystems.2005.05.005; PMID: 15979780
  • Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 2006; 340:1062 - 8; http://dx.doi.org/10.1016/j.bbrc.2005.12.105; PMID: 16403444
  • Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, et al. Modification of antigen-encoding RNA increases stability, translational efficacy and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108:4009 - 17; http://dx.doi.org/10.1182/blood-2006-04-015024; PMID: 16940422
  • Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 2010; 17:961 - 71; http://dx.doi.org/10.1038/gt.2010.52; PMID: 20410931
  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012; 14:428 - 39; http://dx.doi.org/10.1002/jgm.2605; PMID: 22262664
  • Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm 2009; 71:484 - 9; http://dx.doi.org/10.1016/j.ejpb.2008.09.016; PMID: 18948192
  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465 - 8; http://dx.doi.org/10.1126/science.1690918; PMID: 1690918
  • Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 1995; 55:1397 - 400; PMID: 7882341
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000; 30:1 - 7; http://dx.doi.org/10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-#; PMID: 10602021
  • Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 2004; 61:2418 - 24; http://dx.doi.org/10.1007/s00018-004-4255-0; PMID: 15378210
  • Kormann MSD, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011; 29:154 - 7; http://dx.doi.org/10.1038/nbt.1733; PMID: 21217696
  • Budker V, Budker T, Zhang G, Subbotin V, Loomis A, Wolff JA. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2000; 2:76 - 88; http://dx.doi.org/10.1002/(SICI)1521-2254(200003/04)2:2<76::AID-JGM97>3.0.CO;2-4; PMID: 10809141
  • Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003; 301:1545 - 7; http://dx.doi.org/10.1126/science.1087117; PMID: 12970568
  • Lingor P, Michel U, Schöll U, Bähr M, Kügler S. Transfection of “naked” siRNA results in endosomal uptake and metabolic impairment in cultured neurons. Biochem Biophys Res Commun 2004; 315:1126 - 33; http://dx.doi.org/10.1016/j.bbrc.2004.01.170; PMID: 14985130
  • Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet 2005; 54:3 - 20; http://dx.doi.org/10.1016/S0065-2660(05)54001-X; PMID: 16096005
  • Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 2006; 281:14370 - 5; http://dx.doi.org/10.1074/jbc.M513868200; PMID: 16531407
  • Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 2006; 58:32 - 45; http://dx.doi.org/10.1124/pr.58.1.8; PMID: 16507881
  • Saleh M-C, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 2006; 8:793 - 802; http://dx.doi.org/10.1038/ncb1439; PMID: 16862146
  • Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007; 25:1149 - 57; http://dx.doi.org/10.1038/nbt1339; PMID: 17873866
  • Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WPR, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 2011; 8:627 - 36; http://dx.doi.org/10.4161/rna.8.4.15394; PMID: 21654214
  • Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol 2002; 14:123 - 8; http://dx.doi.org/10.1016/S0952-7915(01)00307-7; PMID: 11790542
  • Greaves DR, Gordon S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 2005; 46:11 - 20; http://dx.doi.org/10.1194/jlr.R400011-JLR200; PMID: 15548472
  • Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197 - 216; http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359; PMID: 11861602
  • Graf GA, Connell PM, van der Westhuyzen DR, Smart EJ. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem 1999; 274:12043 - 8; http://dx.doi.org/10.1074/jbc.274.17.12043; PMID: 10207027
  • Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011; 18:702 - 8; http://dx.doi.org/10.1038/gt.2011.17; PMID: 21368901
  • Probst J, Fotin-Mleczek M, Schlake T, Thess A, Kramps T, Kallen K-J. Messenger RNA Vaccines. Gene Vaccines. Vienna: Springer Vienna, 2012:223-45.
  • González-González E, Ra H, Spitler R, Hickerson RP, Contag CH, Kaspar RL. Increased interstitial pressure improves nucleic acid delivery to skin enabling a comparative analysis of constitutive promoters. Gene Ther 2010; 17:1270 - 8; http://dx.doi.org/10.1038/gt.2010.74; PMID: 20463756
  • Herweijer H, Wolff JA. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther 2007; 14:99 - 107; PMID: 17167496
  • Danialou G, Comtois AS, Matecki S, Nalbantoglu J, Karpati G, Gilbert R, et al. Optimization of regional intraarterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol Ther 2005; 11:257 - 66; http://dx.doi.org/10.1016/j.ymthe.2004.09.016; PMID: 15668137
  • Probst J, Brechtel S, Scheel B, Hoerr I, Jung G, Rammensee H-G, et al. Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther 2006; 4:4; http://dx.doi.org/10.1186/1479-0556-4-4; PMID: 16732888
  • Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res 2001; 29:3882 - 91; http://dx.doi.org/10.1093/nar/29.18.3882; PMID: 11557821
  • Huth S, Hoffmann F, von Gersdorff K, Laner A, Reinhardt D, Rosenecker J, et al. Interaction of polyamine gene vectors with RNA leads to the dissociation of plasmid DNA-carrier complexes. J Gene Med 2006; 8:1416 - 24; http://dx.doi.org/10.1002/jgm.975; PMID: 17029296
  • Martinon F, Krishnan S, Lenzen G, Magné R, Gomard E, Guillet JG, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993; 23:1719 - 22; http://dx.doi.org/10.1002/eji.1830230749; PMID: 8325342
  • Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 2006; 55:672 - 83; http://dx.doi.org/10.1007/s00262-005-0064-z; PMID: 16133108
  • Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999; 10:2719 - 24; http://dx.doi.org/10.1089/10430349950016762; PMID: 10566900
  • Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri A, Lafosse S, Le Cam E, et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 2007; 14:802 - 14; http://dx.doi.org/10.1038/sj.cgt.7701072; PMID: 17589432
  • Mathers AR, Larregina AT. Professional antigen-presenting cells of the skin. Immunol Res 2006; 36:127 - 36; http://dx.doi.org/10.1385/IR:36:1:127; PMID: 17337773
  • van den Berg JH, Oosterhuis K, Hennink WE, Storm G, van der Aa LJ, Engbersen JFJ, et al. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J Control Release 2010; 141:234 - 40; http://dx.doi.org/10.1016/j.jconrel.2009.09.005; PMID: 19751778
  • Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM. Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res 2005; 22:373 - 80; http://dx.doi.org/10.1007/s11095-004-1874-y; PMID: 15835742
  • Soliman M, Nasanit R, Abulateefeh SR, Allen S, Davies MC, Briggs SS, et al. Multicomponent synthetic polymers with viral-mimetic chemistry for nucleic acid delivery. Mol Pharm 2012; 9:1 - 13; http://dx.doi.org/10.1021/mp200108q; PMID: 22142438
  • Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles?. Mol Ther 2012; 20:1298 - 304; http://dx.doi.org/10.1038/mt.2012.79; PMID: 22525514
  • Xiao Z, Levy-Nissenbaum E, Alexis F, Lupták A, Teply BA, Chan JM, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 2012; 6:696 - 704; http://dx.doi.org/10.1021/nn204165v; PMID: 22214176
  • Gurdon JB, Lane CD, Woodland HR, Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971; 233:177 - 82; http://dx.doi.org/10.1038/233177a0; PMID: 4939175
  • Laskey RA, Gurdon JB, Crawford LV. Translation of encephalomyocarditis viral RNA in oocytes of Xenopus laevis. Proc Natl Acad Sci U S A 1972; 69:3665 - 9; http://dx.doi.org/10.1073/pnas.69.12.3665; PMID: 4345506
  • Ahlquist P, French R, Janda M, Loesch-Fries LS. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc Natl Acad Sci U S A 1984; 81:7066 - 70; http://dx.doi.org/10.1073/pnas.81.22.7066; PMID: 16593527
  • van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 1986; 83:2330 - 4; http://dx.doi.org/10.1073/pnas.83.8.2330; PMID: 3010307
  • Callis J, Fromm M, Walbot V. Expression of mRNA electroporated into plant and animal cells. Nucleic Acids Res 1987; 15:5823 - 31; http://dx.doi.org/10.1093/nar/15.14.5823; PMID: 3475678
  • Karikó K, Kuo A, Barnathan E. Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther 1999; 6:1092 - 100; http://dx.doi.org/10.1038/sj.gt.3300930; PMID: 10455412
  • Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7:618 - 30; http://dx.doi.org/10.1016/j.stem.2010.08.012; PMID: 20888316
  • Cho KW, Morita EA, Wright CV, De Robertis EM. Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells. Cell 1991; 65:55 - 64; http://dx.doi.org/10.1016/0092-8674(91)90407-P; PMID: 1672833
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465 - 72; http://dx.doi.org/10.1084/jem.184.2.465; PMID: 8760800
  • Qiu P, Ziegelhoffer P, Sun J, Yang NS. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 1996; 3:262 - 8; PMID: 8646558
  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008; 16:1833 - 40; http://dx.doi.org/10.1038/mt.2008.200; PMID: 18797453
  • Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 2010; 38:5884 - 92; http://dx.doi.org/10.1093/nar/gkq347; PMID: 20457754
  • Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 2006; 124:849 - 63; http://dx.doi.org/10.1016/j.cell.2006.02.019; PMID: 16497593
  • Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet 1963; 2:113 - 6; http://dx.doi.org/10.1016/S0140-6736(63)92585-6; PMID: 13956740
  • Field AK, Tytell AA, Lampson GP, Hilleman MR. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci U S A 1967; 58:1004 - 10; http://dx.doi.org/10.1073/pnas.58.3.1004; PMID: 5233831
  • Absher M, Stinebring WR. Toxic properties of a synthetic double-stranded RNA. Endotoxin-like properties of poly I. poly C, an interferon stimulator. Nature 1969; 223:715 - 7; http://dx.doi.org/10.1038/223715a0; PMID: 5805520
  • Scheel B, Braedel S, Probst J, Carralot J-P, Wagner H, Schild H, et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 2004; 34:537 - 47; http://dx.doi.org/10.1002/eji.200324198; PMID: 14768059
  • Scheel B, Teufel R, Probst J, Carralot J-P, Geginat J, Radsak M, et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 2005; 35:1557 - 66; http://dx.doi.org/10.1002/eji.200425656; PMID: 15832293
  • Rettig L, Haen SP, Bittermann AG, von Boehmer L, Curioni A, Krämer SD, et al. Particle size and activation threshold: a new dimension of danger signaling. Blood 2010; 115:4533 - 41; http://dx.doi.org/10.1182/blood-2009-11-247817; PMID: 20304804
  • Parvanova I, Rettig L, Knuth A, Pascolo S. The form of NY-ESO-1 antigen has an impact on the clinical efficacy of anti-tumor vaccination. Vaccine 2011; 29:3832 - 6; http://dx.doi.org/10.1016/j.vaccine.2011.03.073; PMID: 21470580
  • Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8:559 - 68; http://dx.doi.org/10.1038/nri2314; PMID: 18575461
  • McCartney SA, Colonna M. Viral sensors: diversity in pathogen recognition. Immunol Rev 2009; 227:87 - 94; http://dx.doi.org/10.1111/j.1600-065X.2008.00726.x; PMID: 19120478
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732 - 8; http://dx.doi.org/10.1038/35099560; PMID: 11607032
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529 - 31; http://dx.doi.org/10.1126/science.1093616; PMID: 14976261
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526 - 9; http://dx.doi.org/10.1126/science.1093620; PMID: 14976262
  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279:12542 - 50; http://dx.doi.org/10.1074/jbc.M310175200; PMID: 14729660
  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 2006; 36:3256 - 67; http://dx.doi.org/10.1002/eji.200636617; PMID: 17111347
  • Hornung V, Barchet W, Schlee M, Hartmann G. RNA recognition via TLR7 and TLR8. Handb Exp Pharmacol 2008; 183:71 - 86; http://dx.doi.org/10.1007/978-3-540-72167-3_4; PMID: 18071655
  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr.. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 2008; 454:523 - 7; http://dx.doi.org/10.1038/nature07106; PMID: 18548002
  • Uzri D, Gehrke L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol 2009; 83:4174 - 84; http://dx.doi.org/10.1128/JVI.02449-08; PMID: 19224987
  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314:994 - 7; http://dx.doi.org/10.1126/science.1132505; PMID: 17038590
  • Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006; 314:997 - 1001; http://dx.doi.org/10.1126/science.1132998; PMID: 17038589
  • Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010; 140:397 - 408; http://dx.doi.org/10.1016/j.cell.2010.01.020; PMID: 20144762
  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441:101 - 5; http://dx.doi.org/10.1038/nature04734; PMID: 16625202
  • Wilkins C, Gale M Jr.. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 2010; 22:41 - 7; http://dx.doi.org/10.1016/j.coi.2009.12.003; PMID: 20061127
  • Bruns AM, Horvath CM. Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol 2012; 47:194 - 206; http://dx.doi.org/10.3109/10409238.2011.630974; PMID: 22066529
  • Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011; 12:137 - 43; http://dx.doi.org/10.1038/ni.1979; PMID: 21217758
  • Hovanessian AG. On the discovery of interferon-inducible, double-stranded RNA activated enzymes: the 2′-5’oligoadenylate synthetases and the protein kinase PKR. Cytokine Growth Factor Rev 2007; 18:351 - 61; http://dx.doi.org/10.1016/j.cytogfr.2007.06.003; PMID: 17681872
  • Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 2007; 318:1455 - 8; http://dx.doi.org/10.1126/science.1147347; PMID: 18048689
  • Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23:165 - 75; http://dx.doi.org/10.1016/j.immuni.2005.06.008; PMID: 16111635
  • Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D, Karikó K. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res 2011; 39:9329 - 38; http://dx.doi.org/10.1093/nar/gkr586; PMID: 21813458
  • Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 2000; 114:632 - 6; http://dx.doi.org/10.1046/j.1523-1747.2000.00929.x; PMID: 10733665
  • Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998; 16:364 - 9; http://dx.doi.org/10.1038/nbt0498-364; PMID: 9555728
  • Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 2005; 174:3798 - 807; PMID: 15749921
  • Weide B, Carralot J-P, Reese A, Scheel B, Eigentler TK, Hoerr I, et al. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 2008; 31:180 - 8; http://dx.doi.org/10.1097/CJI.0b013e31815ce501; PMID: 18481387
  • Weide B, Pascolo S, Scheel B, Derhovanessian E, Pflugfelder A, Eigentler TK, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009; 32:498 - 507; http://dx.doi.org/10.1097/CJI.0b013e3181a00068; PMID: 19609242
  • Rittig SM, Haentschel M, Weimer KJ, Heine A, Muller MR, Brugger W, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011; 19:990 - 9; http://dx.doi.org/10.1038/mt.2010.289; PMID: 21189474
  • Xiang Z, Ertl HC. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 1995; 2:129 - 35; http://dx.doi.org/10.1016/S1074-7613(95)80001-8; PMID: 7895169
  • Iwasaki A, Stiernholm BJ, Chan AK, Berinstein NL, Barber BH. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 1997; 158:4591 - 601; PMID: 9144471
  • Geissler M, Gesien A, Tokushige K, Wands JR. Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol 1997; 158:1231 - 7; PMID: 9013964
  • Loudon PT, Yager EJ, Lynch DT, Narendran A, Stagnar C, Franchini AM, et al. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PLoS One 2010; 5:e11021; http://dx.doi.org/10.1371/journal.pone.0011021; PMID: 20544035
  • Kanagavelu SK, Snarsky V, Termini JM, Gupta S, Barzee S, Wright JA, et al. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine 2012; 30:691 - 702; http://dx.doi.org/10.1016/j.vaccine.2011.11.088; PMID: 22146759
  • Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 2012; 56:85 - 92; http://dx.doi.org/10.1111/j.1348-0421.2011.00409.x; PMID: 22150716
  • Xu H, Zhao G, Huang X, Ding Z, Wang J, Wang X, et al. CD40-expressing plasmid induces anti-CD40 antibody and enhances immune responses to DNA vaccination. J Gene Med 2010; 12:97 - 106; http://dx.doi.org/10.1002/jgm.1412; PMID: 19950201
  • Kreiter S, Diken M, Selmi A, Diekmann J, Attig S, Hüsemann Y, et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 2011; 71:6132 - 42; http://dx.doi.org/10.1158/0008-5472.CAN-11-0291; PMID: 21816907
  • Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994; 180:1263 - 72; http://dx.doi.org/10.1084/jem.180.4.1263; PMID: 7523569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.