2,956
Views
47
CrossRef citations to date
0
Altmetric
Review

Toxoplasma gondii and the blood-brain barrier

, &
Pages 182-192 | Published online: 01 Mar 2012

References

  • Dubey JP, Miller NL, Frenkel JK. Toxoplasma gondii life cycle in cats. J Am Vet Med Assoc 1970; 157:1767 - 70; PMID: 5530378
  • Tenter AM. Toxoplasma gondii in animals used for human consumption. Mem Inst Oswaldo Cruz 2009; 104:364 - 9; http://dx.doi.org/10.1590/S0074-02762009000200033; PMID: 19430665
  • Jones JL, Dubey JP. Waterborne toxoplasmosis–recent developments. Exp Parasitol 2010; 124:10 - 25; http://dx.doi.org/10.1016/j.exppara.2009.03.013; PMID: 19324041
  • Dabritz HA, Miller MA, Atwill ER, Gardner IA, Leutenegger CM, Melli AC, et al. Detection of Toxoplasma gondii-like oocysts in cat feces and estimates of the environmental oocyst burden. J Am Vet Med Assoc 2007; 231:1676 - 84; http://dx.doi.org/10.2460/javma.231.11.1676; PMID: 18052801
  • Barragan A, Sibley LD. Migration of Toxoplasma gondii across biological barriers. Trends Microbiol 2003; 11:426 - 30; http://dx.doi.org/10.1016/S0966-842X(03)00205-1; PMID: 13678858
  • Courret N, Darche S, Sonigo P, Milon G, Buzoni-Gatel D, Tardieux I. CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 2006; 107:309 - 16; http://dx.doi.org/10.1182/blood-2005-02-0666; PMID: 16051744
  • Hunter CA, Remington JS. Immunopathogenesis of toxoplasmic encephalitis. J Infect Dis 1994; 170:1057 - 67; http://dx.doi.org/10.1093/infdis/170.5.1057; PMID: 7963693
  • Pavesio CE, Lightman S. Toxoplasma gondii and ocular toxoplasmosis: pathogenesis. Br J Ophthalmol 1996; 80:1099 - 107; http://dx.doi.org/10.1136/bjo.80.12.1099; PMID: 9059278
  • Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy. Clin Infect Dis 2008; 47:554 - 66; http://dx.doi.org/10.1086/590149; PMID: 18624630
  • Fischer HG, Nitzgen B, Reichmann G, Gross U, Hadding U. Host cells of Toxoplasma gondii encystation in infected primary culture from mouse brain. Parasitol Res 1997; 83:637 - 41; http://dx.doi.org/10.1007/s004360050311; PMID: 9272550
  • Carruthers VB, Suzuki Y. Effects of Toxoplasma gondii infection on the brain. Schizophr Bull 2007; 33:745 - 51; http://dx.doi.org/10.1093/schbul/sbm008; PMID: 17322557
  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363:1965 - 76; http://dx.doi.org/10.1016/S0140-6736(04)16412-X; PMID: 15194258
  • Dellacasa-Lindberg I, Hitziger N, Barragan A. Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect 2007; 9:1291 - 8; http://dx.doi.org/10.1016/j.micinf.2007.06.003; PMID: 17897859
  • Melzer TC, Cranston HJ, Weiss LM, Halonen SK. Host cell preference of Toxoplasma gondii cysts in murine brain: A confocal study. J Neuroparasitology 2010; 1.
  • Flegr J. Effects of toxoplasma on human behavior. Schizophr Bull 2007; 33:757 - 60; http://dx.doi.org/10.1093/schbul/sbl074; PMID: 17218612
  • Kocazeybek B, Oner YA, Turksoy R, Babur C, Cakan H, Sahip N, et al. Higher prevalence of toxoplasmosis in victims of traffic accidents suggest increased risk of traffic accident in Toxoplasma-infected inhabitants of Istanbul and its suburbs. Forensic Sci Int 2009; 187:103 - 8; http://dx.doi.org/10.1016/j.forsciint.2009.03.007; PMID: 19356869
  • Kar N, Misra B. Toxoplasma seropositivity and depression: a case report. BMC Psychiatry 2004; 4:1; http://dx.doi.org/10.1186/1471-244X-4-1; PMID: 15018628
  • Torrey EF, Yolken RH. Toxoplasma gondii and schizophrenia. Emerg Infect Dis 2003; 9:1375 - 80; PMID: 14725265
  • Kravetz JD, Federman DG. Toxoplasmosis in pregnancy. Am J Med 2005; 118:212 - 6; http://dx.doi.org/10.1016/j.amjmed.2004.08.023; PMID: 15745715
  • Klaren VN, Kijlstra A. Toxoplasmosis, an overview with emphasis on ocular involvement. Ocul Immunol Inflamm 2002; 10:1 - 26; http://dx.doi.org/10.1076/ocii.10.1.1.10330; PMID: 12461700
  • Luft BJ, Hafner R, Korzun AH, Leport C, Antoniskis D, Bosler EM, et al. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. Members of the ACTG 077p/ANRS 009 Study Team. N Engl J Med 1993; 329:995 - 1000; http://dx.doi.org/10.1056/NEJM199309303291403; PMID: 8366923
  • Saeij JP, Boyle JP, Boothroyd JC. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol 2005; 21:476 - 81; http://dx.doi.org/10.1016/j.pt.2005.08.001; PMID: 16098810
  • Lehmann T, Marcet PL, Graham DH, Dahl ER, Dubey JP. Globalization and the population structure of Toxoplasma gondii. Proc Natl Acad Sci USA 2006; 103:11423 - 8; http://dx.doi.org/10.1073/pnas.0601438103; PMID: 16849431
  • Dardé ML. Toxoplasma gondii, “new” genotypes and virulence. Parasite 2008; 15:366 - 71; PMID: 18814708
  • Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 1995; 172:1561 - 6; http://dx.doi.org/10.1093/infdis/172.6.1561; PMID: 7594717
  • Boothroyd JC, Grigg ME. Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease?. Curr Opin Microbiol 2002; 5:438 - 42; http://dx.doi.org/10.1016/S1369-5274(02)00349-1; PMID: 12160866
  • Howe DK, Honore S, Derouin F, Sibley LD. Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. J Clin Microbiol 1997; 35:1411 - 4; PMID: 9163454
  • Honoré S, Couvelard A, Garin YJ, Bedel C, Henin D, Darde ML, et al. [Genotyping of Toxoplasma gondii strains from immunocompromised patients]. Pathol Biol (Paris) 2000; 48:541 - 7; PMID: 10965531
  • Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 2008; 6:79 - 88; http://dx.doi.org/10.1038/nrmicro1800; PMID: 18059289
  • Bradley PJ, Sibley LD. Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol 2007; 10:582 - 7; http://dx.doi.org/10.1016/j.mib.2007.09.013; PMID: 17997128
  • Steinfeldt T, Konen-Waisman S, Tong L, Pawlowski N, Lamkemeyer T, Sibley LD, et al. Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol 2010; 8:e1000576; http://dx.doi.org/10.1371/journal.pbio.1000576; PMID: 21203588
  • Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 2006; 314:1780 - 3; http://dx.doi.org/10.1126/science.1133690; PMID: 17170306
  • Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007; 445:324 - 7; http://dx.doi.org/10.1038/nature05395; PMID: 17183270
  • Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci USA 2011; 108:9625 - 30; http://dx.doi.org/10.1073/pnas.1015980108; PMID: 21436047
  • Ong YC, Reese ML, Boothroyd JC. Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. J Biol Chem 2010; 285:28731 - 40; http://dx.doi.org/10.1074/jbc.M110.112359; PMID: 20624917
  • Yamamoto M, Standley DM, Takashima S, Saiga H, Okuyama M, Kayama H, et al. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. J Exp Med 2009; 206:2747 - 60; http://dx.doi.org/10.1084/jem.20091703; PMID: 19901082
  • Robben PM, Mordue DG, Truscott SM, Takeda K, Akira S, Sibley LD. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J Immunol 2004; 172:3686 - 94; PMID: 15004172
  • Butcher BA, Kim L, Panopoulos AD, Watowich SS, Murray PJ, Denkers EY. IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-alpha in host macrophages. J Immunol 2005; 174:3148 - 52; PMID: 15749841
  • Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, et al. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 2008; 27:2495 - 509; http://dx.doi.org/10.1038/emboj.2008.176; PMID: 18772884
  • Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 2005; 1:e24; http://dx.doi.org/10.1371/journal.ppat.0010024; PMID: 16304607
  • Yamamoto M, Ma JS, Mueller C, Kamiyama N, Saiga H, Kubo E, et al. ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18. J Exp Med 2011; 208:1533 - 46; http://dx.doi.org/10.1084/jem.20101660; PMID: 21670204
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41 - 53; http://dx.doi.org/10.1038/nrn1824; PMID: 16371949
  • Join-Lambert O, Morand PC, Carbonnelle E, Coureuil M, Bille E, Bourdoulous S, et al. Mechanisms of meningeal invasion by a bacterial extracellular pathogen, the example of Neisseria meningitidis. Prog Neurobiol 2010; 91:130 - 9; http://dx.doi.org/10.1016/j.pneurobio.2009.12.004; PMID: 20026234
  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13 - 25; http://dx.doi.org/10.1016/j.nbd.2009.07.030; PMID: 19664713
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173 - 85; http://dx.doi.org/10.1124/pr.57.2.4; PMID: 15914466
  • Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25:59 - 127; http://dx.doi.org/10.1007/s10571-004-1377-8; PMID: 15962509
  • Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 2005; 25:25 - 39; http://dx.doi.org/10.1007/s10571-004-1375-x; PMID: 15962507
  • Kis B, Snipes JA, Deli MA, Abraham CS, Yamashita H, Ueta Y, et al. Chronic adrenomedullin treatment improves blood-brain barrier function but has no effects on expression of tight junction proteins. Acta Neurochir Suppl 2003; 86:565 - 8; http://dx.doi.org/10.1007/978-3-7091-0651-8_115; PMID: 14753507
  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 2009; 54:253 - 63; http://dx.doi.org/10.1016/j.neuint.2008.12.002; PMID: 19111869
  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 2005; 1038:208 - 15; http://dx.doi.org/10.1016/j.brainres.2005.01.027; PMID: 15757636
  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, et al. Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 1998; 244:312 - 6; http://dx.doi.org/10.1006/bbrc.1997.8051; PMID: 9514852
  • de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, et al. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 1996; 64:37 - 43; http://dx.doi.org/10.1016/0165-5728(95)00148-4; PMID: 8598388
  • Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 2004; 5:261 - 70; http://dx.doi.org/10.1038/nrm1357; PMID: 15071551
  • Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 2008; 130:55 - 70; http://dx.doi.org/10.1007/s00418-008-0424-9; PMID: 18415116
  • Wolburg H. Blood-Brain Barriers - From Ontogeny to Artificial Interfaces. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.
  • Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2:86 - 98; http://dx.doi.org/10.1602/neurorx.2.1.86; PMID: 15717060
  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7:678 - 89; http://dx.doi.org/10.1038/nri2156; PMID: 17717539
  • Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002; 82:521 - 33; http://dx.doi.org/10.1038/labinvest.3780446; PMID: 12003992
  • Rahman A, Fazal F. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 2009; 11:823 - 39; http://dx.doi.org/10.1089/ars.2008.2204; PMID: 18808323
  • Kansas GS. Selectins and their ligands: current concepts and controversies. Blood 1996; 88:3259 - 87; PMID: 8896391
  • Zarbock A, Muller H, Kuwano Y, Ley K. PSGL-1-dependent myeloid leukocyte activation. J Leukoc Biol 2009; 86:1119 - 24; http://dx.doi.org/10.1189/jlb.0209117; PMID: 19703898
  • Kinashi T. Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 2005; 5:546 - 59; http://dx.doi.org/10.1038/nri1646; PMID: 15965491
  • Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 2007; 26:784 - 97; http://dx.doi.org/10.1016/j.immuni.2007.04.015; PMID: 17570692
  • Galea I, Bechmann I, Perry VH. What is immune privilege (not)?. Trends Immunol 2007; 28:12 - 8; http://dx.doi.org/10.1016/j.it.2006.11.004; PMID: 17129764
  • Kleine TO, Benes L. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons. Cytometry A 2006; 69:147 - 51; http://dx.doi.org/10.1002/cyto.a.20225; PMID: 16479603
  • Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia 2001; 36:118 - 24; http://dx.doi.org/10.1002/glia.1101; PMID: 11596120
  • Mamidi A, DeSimone JA, Pomerantz RJ. Central nervous system infections in individuals with HIV-1 infection. J Neurovirol 2002; 8:158 - 67; http://dx.doi.org/10.1080/13550280290049723; PMID: 12053271
  • Grant IH, Gold JW, Rosenblum M, Niedzwiecki D, Armstrong D. Toxoplasma gondii serology in HIV-infected patients: the development of central nervous system toxoplasmosis in AIDS. AIDS 1990; 4:519 - 21; http://dx.doi.org/10.1097/00002030-199006000-00004; PMID: 2386617
  • Nascimento LV, Stollar F, Tavares LB, Cavasini CE, Maia IL, Cordeiro JA, et al. Risk factors for toxoplasmic encephalitis in HIV-infected patients: a case-control study in Brazil. Ann Trop Med Parasitol 2001; 95:587 - 93; http://dx.doi.org/10.1080/00034980120073931; PMID: 11672464
  • Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, et al. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 1994; 153:2533 - 43; PMID: 7915739
  • Suzuki Y, Rani S, Liesenfeld O, Kojima T, Lim S, Nguyen TA, et al. Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect Immun 1997; 65:2339 - 45; PMID: 9169772
  • Filisetti D, Candolfi E. Immune response to Toxoplasma gondii. Ann Ist Super Sanita 2004; 40:71 - 80; PMID: 15269455
  • Subauste CS, Koniaris AH, Remington JS. Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii-infected cells. J Immunol 1991; 147:3955 - 9; PMID: 1940378
  • Munoz M, Liesenfeld O, Heimesaat MM. Immunology of Toxoplasma gondii. Immunol Rev 2011; 240:269 - 85; http://dx.doi.org/10.1111/j.1600-065X.2010.00992.x; PMID: 21349099
  • Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 1998; 11:569 - 88; PMID: 9767056
  • Schlüter D, Lohler J, Deckert M, Hof H, Schwendemann G. Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol 1991; 31:185 - 98; http://dx.doi.org/10.1016/0165-5728(91)90040-E; PMID: 1995650
  • Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 1992; 149:175 - 80; PMID: 1351500
  • Suzuki Y. Host resistance in the brain against Toxoplasma gondii. J Infect Dis 2002; 185:Suppl 1 S58 - 65; http://dx.doi.org/10.1086/337999; PMID: 11865441
  • Wilson EH, Harris TH, Mrass P, John B, Tait ED, Wu GF, et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 2009; 30:300 - 11; http://dx.doi.org/10.1016/j.immuni.2008.12.013; PMID: 19167248
  • Deckert-Schlüter M, Schluter D, Hof H, Wiestler OD, Lassmann H. Differential expression of ICAM-1, VCAM-1 and their ligands LFA-1, Mac-1, CD43, VLA-4, and MHC class II antigens in murine Toxoplasma encephalitis: a light microscopic and ultrastructural immunohistochemical study. J Neuropathol Exp Neurol 1994; 53:457 - 68; http://dx.doi.org/10.1097/00005072-199409000-00005; PMID: 7521903
  • Deckert M, Lutjen S, Leuker CE, Kwok LY, Strack A, Muller W, et al. Mice with neonatally induced inactivation of the vascular cell adhesion molecule-1 fail to control the parasite in Toxoplasma encephalitis. Eur J Immunol 2003; 33:1418 - 28; http://dx.doi.org/10.1002/eji.200322826; PMID: 12731069
  • Aliberti J. Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii. Nat Rev Immunol 2005; 5:162 - 70; http://dx.doi.org/10.1038/nri1547; PMID: 15662369
  • Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA. A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 2005; 165:63 - 74; http://dx.doi.org/10.1016/j.jneuroim.2005.04.018; PMID: 16005735
  • Fischer HG, Bonifas U, Reichmann G. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 2000; 164:4826 - 34; PMID: 10779791
  • John B, Ricart B, Tait Wojno ED, Harris TH, Randall LM, Christian DA, et al. Analysis of behavior and trafficking of dendritic cells within the brain during toxoplasmic encephalitis. PLoS Pathog 2011; 7:e1002246; http://dx.doi.org/10.1371/journal.ppat.1002246; PMID: 21949652
  • Halonen SK, Lyman WD, Chiu FC. Growth and development of Toxoplasma gondii in human neurons and astrocytes. J Neuropathol Exp Neurol 1996; 55:1150 - 6; http://dx.doi.org/10.1097/00005072-199611000-00006; PMID: 8939198
  • Peterson PK, Gekker G, Hu S, Chao CC. Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis 1995; 171:516 - 8; http://dx.doi.org/10.1093/infdis/171.2.516; PMID: 7844409
  • Oberdörfer C, Adams O, MacKenzie CR, De Groot CJ, Daubener W. Role of IDO activation in anti-microbial defense in human native astrocytes. Adv Exp Med Biol 2003; 527:15 - 26; http://dx.doi.org/10.1007/978-1-4615-0135-0_2; PMID: 15206712
  • Melzer T, Duffy A, Weiss LM, Halonen SK. The gamma interferon (IFN-gamma)-inducible GTP-binding protein IGTP is necessary for toxoplasma vacuolar disruption and induces parasite egression in IFN-gamma-stimulated astrocytes. Infect Immun 2008; 76:4883 - 94; http://dx.doi.org/10.1128/IAI.01288-07; PMID: 18765738
  • Liesenfeld O, Parvanova I, Zerrahn J, Han SJ, Heinrich F, Munoz M, et al. The IFN-gamma-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS ONE 2011; 6:e20568; http://dx.doi.org/10.1371/journal.pone.0020568; PMID: 21698150
  • Scharton-Kersten TM, Yap G, Magram J, Sher A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 1997; 185:1261 - 73; http://dx.doi.org/10.1084/jem.185.7.1261; PMID: 9104813
  • Khan IA, Schwartzman JD, Matsuura T, Kasper LH. A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci USA 1997; 94:13955 - 60; http://dx.doi.org/10.1073/pnas.94.25.13955; PMID: 9391134
  • Schlüter D, Kwok LY, Lutjen S, Soltek S, Hoffmann S, Korner H, et al. Both lymphotoxin-alpha and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J Immunol 2003; 170:6172 - 82; PMID: 12794148
  • Strack A, Asensio VC, Campbell IL, Schluter D, Deckert M. Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-gamma. Acta Neuropathol 2002; 103:458 - 68; http://dx.doi.org/10.1007/s00401-001-0491-7; PMID: 11935261
  • Weiss JM, Downie SA, Lyman WD, Berman JW. Astrocyte-derived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol 1998; 161:6896 - 903; PMID: 9862722
  • Drögemüller K, Helmuth U, Brunn A, Sakowicz-Burkiewicz M, Gutmann DH, Mueller W, et al. Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J Immunol 2008; 181:2683 - 93; PMID: 18684959
  • Deckert M, Sedgwick JD, Fischer E, Schluter D. Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction. Acta Neuropathol 2006; 111:548 - 58; http://dx.doi.org/10.1007/s00401-006-0062-z; PMID: 16718351
  • Miller CM, Boulter NR, Ikin RJ, Smith NC. The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol 2009; 39:23 - 39; http://dx.doi.org/10.1016/j.ijpara.2008.08.002; PMID: 18775432
  • Kim KS. Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 2008; 6:625 - 34; http://dx.doi.org/10.1038/nrmicro1952; PMID: 18604221
  • Kristensson K. Microbes' roadmap to neurons. Nat Rev Neurosci 2011; 12:345 - 57; http://dx.doi.org/10.1038/nrn3029; PMID: 21587289
  • Grab DJ, Nikolskaia O, Kim YV, Lonsdale-Eccles JD, Ito S, Hara T, et al. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J Parasitol 2004; 90:970 - 9; http://dx.doi.org/10.1645/GE-287R; PMID: 15562595
  • Grab DJ, Perides G, Dumler JS, Kim KJ, Park J, Kim YV, et al. Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect Immun 2005; 73:1014 - 22; http://dx.doi.org/10.1128/IAI.73.2.1014-1022.2005; PMID: 15664945
  • Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 2004; 72:4985 - 95; http://dx.doi.org/10.1128/IAI.72.9.4985-4995.2004; PMID: 15321990
  • Jong AY, Stins MF, Huang SH, Chen SH, Kim KS. Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 2001; 69:4536 - 44; http://dx.doi.org/10.1128/IAI.69.7.4536-4544.2001; PMID: 11401997
  • Kim KS. Strategy of Escherichia coli for crossing the blood-brain barrier. J Infect Dis 2002; 186:Suppl 2 S220 - 4; http://dx.doi.org/10.1086/344284; PMID: 12424701
  • Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 1998; 102:347 - 60; http://dx.doi.org/10.1172/JCI2406; PMID: 9664076
  • Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology 2009; 385:425 - 33; http://dx.doi.org/10.1016/j.virol.2008.11.047; PMID: 19135695
  • Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A. Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 2006; 296:553 - 8; http://dx.doi.org/10.1016/j.ijmm.2006.06.006; PMID: 17010667
  • Coureuil M, Mikaty G, Miller F, Lecuyer H, Bernard C, Bourdoulous S, et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 2009; 325:83 - 7; http://dx.doi.org/10.1126/science.1173196; PMID: 19520910
  • Butcher BA, Kim L, Johnson PF, Denkers EY. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-kappa B. J Immunol 2001; 167:2193 - 201; PMID: 11490005
  • Denkers EY, Kim L, Butcher BA. In the belly of the beast: subversion of macrophage proinflammatory signalling cascades during Toxoplasma gondii infection. Cell Microbiol 2003; 5:75 - 83; http://dx.doi.org/10.1046/j.1462-5822.2003.00258.x; PMID: 12580944
  • Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nat Immunol 2002; 3:1041 - 7; http://dx.doi.org/10.1038/ni1102-1041; PMID: 12407413
  • Drevets DA, Jelinek TA, Freitag NE. Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect Immun 2001; 69:1344 - 50; http://dx.doi.org/10.1128/IAI.69.3.1344-1350.2001; PMID: 11179297
  • Persson CM, Lambert H, Vutova PP, Dellacasa-Lindberg I, Nederby J, Yagita H, et al. Transmission of Toxoplasma gondii from infected dendritic cells to natural killer cells. Infect Immun 2009; 77:970 - 6; http://dx.doi.org/10.1128/IAI.00833-08; PMID: 19139191
  • Drevets DA, Bronze MS. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 2008; 53:151 - 65; http://dx.doi.org/10.1111/j.1574-695X.2008.00404.x; PMID: 18462388
  • Drevets DA, Dillon MJ, Schawang JS, Van Rooijen N, Ehrchen J, Sunderkotter C, et al. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol 2004; 172:4418 - 24; PMID: 15034057
  • Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, et al. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 1998; 66:5260 - 7; PMID: 9784531
  • Join-Lambert OF, Ezine S, Le Monnier A, Jaubert F, Okabe M, Berche P, et al. Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell Microbiol 2005; 7:167 - 80; http://dx.doi.org/10.1111/j.1462-5822.2004.00444.x; PMID: 15659061
  • Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 2007; 27:123 - 34; http://dx.doi.org/10.1038/sj.jcbfm.9600330; PMID: 16685256
  • Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, et al. Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 2005; 25:181 - 99; http://dx.doi.org/10.1007/s10571-004-1383-x; PMID: 15962513
  • Lambert H, Barragan A. Modelling parasite dissemination: host cell subversion and immune evasion by Toxoplasma gondii. Cell Microbiol 2010; 12:292 - 300; http://dx.doi.org/10.1111/j.1462-5822.2009.01417.x; PMID: 19995386
  • Fuhrman SA, Joiner KA. Toxoplasma gondii: mechanism of resistance to complement-mediated killing. J Immunol 1989; 142:940 - 7; PMID: 2643665
  • Couper KN, Roberts CW, Brombacher F, Alexander J, Johnson LL. Toxoplasma gondii-specific immunoglobulin M limits parasite dissemination by preventing host cell invasion. Infect Immun 2005; 73:8060 - 8; http://dx.doi.org/10.1128/IAI.73.12.8060-8068.2005; PMID: 16299300
  • Barragan A, Sibley LD. Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence. J Exp Med 2002; 195:1625 - 33; http://dx.doi.org/10.1084/jem.20020258; PMID: 12070289
  • Soldati D, Meissner M. Toxoplasma as a novel system for motility. Curr Opin Cell Biol 2004; 16:32 - 40; http://dx.doi.org/10.1016/j.ceb.2003.11.013; PMID: 15037302
  • Wetzel DM, Hakansson S, Hu K, Roos D, Sibley LD. Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 2003; 14:396 - 406; http://dx.doi.org/10.1091/mbc.E02-08-0458; PMID: 12589042
  • Morisaki JH, Heuser JE, Sibley LD. Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci 1995; 108:2457 - 64; PMID: 7673360
  • Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cell Microbiol 1999; 1:225 - 35; http://dx.doi.org/10.1046/j.1462-5822.1999.00023.x; PMID: 11207555
  • Dowse T, Soldati D. Host cell invasion by the apicomplexans: the significance of microneme protein proteolysis. Curr Opin Microbiol 2004; 7:388 - 96; http://dx.doi.org/10.1016/j.mib.2004.06.013; PMID: 15358257
  • Barragan A, Brossier F, Sibley LD. Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 2005; 7:561 - 8; http://dx.doi.org/10.1111/j.1462-5822.2005.00486.x; PMID: 15760456
  • Lachenmaier SM, Deli MA, Meissner M, Liesenfeld O. Intracellular transport of Toxoplasma gondii through the blood-brain barrier. J Neuroimmunol 2011; 232:119 - 30; http://dx.doi.org/10.1016/j.jneuroim.2010.10.029; PMID: 21106256
  • Unno A, Kitoh K, Takashima Y. Up-regulation of hyaluronan receptors in Toxoplasma gondii-infected monocytic cells. Biochem Biophys Res Commun 2010; 391:477 - 80; http://dx.doi.org/10.1016/j.bbrc.2009.11.083; PMID: 19914206
  • Denney CF, Eckmann L, Reed SL. Chemokine secretion of human cells in response to Toxoplasma gondii infection. Infect Immun 1999; 67:1547 - 52; PMID: 10084985
  • Nagineni CN, Detrick B, Hooks JJ. Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 (IL-1), IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells. Infect Immun 2000; 68:407 - 10; http://dx.doi.org/10.1128/IAI.68.1.407-410.2000; PMID: 10603418
  • Taubert A, Zahner H, Hermosilla C. Dynamics of transcription of immunomodulatory genes in endothelial cells infected with different coccidian parasites. Vet Parasitol 2006; 142:214 - 22; http://dx.doi.org/10.1016/j.vetpar.2006.07.021; PMID: 16930845
  • Mordue DG, Sibley LD. A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J Leukoc Biol 2003; 74:1015 - 25; http://dx.doi.org/10.1189/jlb.0403164; PMID: 12972511
  • Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A. Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol 2006; 8:1611 - 23; http://dx.doi.org/10.1111/j.1462-5822.2006.00735.x; PMID: 16984416
  • Lambert H, Dellacasa-Lindberg I, Barragan A. Migratory responses of leukocytes infected with Toxoplasma gondii. Microbes Infect 2011; 13:96 - 102; http://dx.doi.org/10.1016/j.micinf.2010.10.002; PMID: 20951223
  • Lambert H, Vutova PP, Adams WC, Lore K, Barragan A. The Toxoplasma gondii-shuttling function of dendritic cells is linked to the parasite genotype. Infect Immun 2009; 77:1679 - 88; http://dx.doi.org/10.1128/IAI.01289-08; PMID: 19204091
  • Hitziger N, Dellacasa I, Albiger B, Barragan A. Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol 2005; 7:837 - 48; http://dx.doi.org/10.1111/j.1462-5822.2005.00517.x; PMID: 15888086
  • Unno A, Suzuki K, Xuan X, Nishikawa Y, Kitoh K, Takashima Y. Dissemination of extracellular and intracellular Toxoplasma gondii tachyzoites in the blood flow. Parasitol Int 2008; 57:515 - 8; http://dx.doi.org/10.1016/j.parint.2008.06.004; PMID: 18652914
  • Meissner M, Klaus K. What new cell biology findings could bring to therapeutics: is it time for a phenome-project in Toxoplasma gondii?. Mem Inst Oswaldo Cruz 2009; 104:185 - 9; http://dx.doi.org/10.1590/S0074-02762009000200010; PMID: 19430642
  • Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 2002; 298:837 - 40; http://dx.doi.org/10.1126/science.1074553; PMID: 12399593
  • Mital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol Biol Cell 2005; 16:4341 - 9; http://dx.doi.org/10.1091/mbc.E05-04-0281; PMID: 16000372
  • Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog 2006; 2:e84; http://dx.doi.org/10.1371/journal.ppat.0020084; PMID: 16933991
  • Kessler H, Herm-Gotz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, et al. Microneme protein 8–a new essential invasion factor in Toxoplasma gondii. J Cell Sci 2008; 121:947 - 56; http://dx.doi.org/10.1242/jcs.022350; PMID: 18319299
  • Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010; 465:359 - 62; http://dx.doi.org/10.1038/nature09022; PMID: 20485436
  • Agop-Nersesian C, Egarter S, Langsley G, Foth BJ, Ferguson DJ, Meissner M. Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B. PLoS Pathog 2010; 6:e1001029; http://dx.doi.org/10.1371/journal.ppat.1001029; PMID: 20686666
  • Agop-Nersesian C, Naissant B, Ben Rached F, Rauch M, Kretzschmar A, Thiberge S, et al. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270; http://dx.doi.org/10.1371/journal.ppat.1000270; PMID: 19165333
  • Breinich MS, Ferguson DJ, Foth BJ, van Dooren GG, Lebrun M, Quon DV, et al. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 2009; 19:277 - 86; http://dx.doi.org/10.1016/j.cub.2009.01.039; PMID: 19217293
  • Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 2008; 3:77 - 87; http://dx.doi.org/10.1016/j.chom.2008.01.001; PMID: 18312842
  • John B, Harris TH, Tait ED, Wilson EH, Gregg B, Ng LG, et al. Dynamic Imaging of CD8(+) T cells and dendritic cells during infection with Toxoplasma gondii. PLoS Pathog 2009; 5:e1000505; http://dx.doi.org/10.1371/journal.ppat.1000505; PMID: 19578440
  • Schaeffer M, Han SJ, Chtanova T, van Dooren GG, Herzmark P, Chen Y, et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. J Immunol 2009; 182:6379 - 93; http://dx.doi.org/10.4049/jimmunol.0804307; PMID: 19414791
  • Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M, Herzmark P, et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 2008; 29:487 - 96; http://dx.doi.org/10.1016/j.immuni.2008.07.012; PMID: 18718768