61,879
Views
1,181
CrossRef citations to date
0
Altmetric
Review

Candida albicans pathogenicity mechanisms

, &
Pages 119-128 | Received 12 Oct 2012, Accepted 15 Nov 2012, Published online: 09 Jan 2013

References

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on Earth and in the ocean?. PLoS Biol 2011; 9:e1001127; http://dx.doi.org/10.1371/journal.pbio.1001127; PMID: 21886479
  • Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science 2012; 336:647; http://dx.doi.org/10.1126/science.1222236; PMID: 22582229
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010; 36:1 - 53; http://dx.doi.org/10.3109/10408410903241444; PMID: 20088682
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20:133 - 63; http://dx.doi.org/10.1128/CMR.00029-06; PMID: 17223626
  • Calderone RA, Clancy CJ. Candida and Candidiasis: ASM Press, Washington, DC, 2012.
  • Ruhnke M. Skin and mucous membrane infections. In: Calderone RA, ed. Candida and Candidiasis: ASM Press, Washington, DC, pp. 307-325., 2002.
  • Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr., Calandra TF, Edwards JE Jr., et al, Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 48:503 - 35; http://dx.doi.org/10.1086/596757; PMID: 19191635
  • Hurley R, De Louvois J. Candida vaginitis. Postgrad Med J 1979; 55:645 - 7; http://dx.doi.org/10.1136/pgmj.55.647.645; PMID: 523355
  • Sobel JD. Vulvovaginal candidosis. Lancet 2007; 369:1961 - 71; http://dx.doi.org/10.1016/S0140-6736(07)60917-9; PMID: 17560449
  • Foxman B, Marsh JV, Gillespie B, Sobel JD. Frequency and response to vaginal symptoms among white and African American women: results of a random digit dialing survey. J Womens Health 1998; 7:1167 - 74; http://dx.doi.org/10.1089/jwh.1998.7.1167; PMID: 9861594
  • Fidel PL Jr.. History and new insights into host defense against vaginal candidiasis. Trends Microbiol 2004; 12:220 - 7; http://dx.doi.org/10.1016/j.tim.2004.03.006; PMID: 15120141
  • Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 2007; 45:321 - 46; http://dx.doi.org/10.1080/13693780701218689; PMID: 17510856
  • Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 2008; 4:e35; http://dx.doi.org/10.1371/journal.ppat.0040035; PMID: 18282097
  • Spellberg B, Marr K, Filler SG. Candida: What Should Clinicians and Scientists Be Talking About? In: Calderone RA, Clancy, C.J., ed. Candida and Candidiasis: ASM Press, Washington, DC, pp. 225-242., 2012.
  • Nicholls S, MacCallum DM, Kaffarnik FA, Selway L, Peck SC, Brown AJ. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans.. Fungal Genet Biol 2011; 48:297 - 305; http://dx.doi.org/10.1016/j.fgb.2010.08.010; PMID: 20817114
  • Berman J, Sudbery PE. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002; 3:918 - 30; http://dx.doi.org/10.1038/nrg948; PMID: 12459722
  • Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans.. Trends Microbiol 2004; 12:317 - 24; http://dx.doi.org/10.1016/j.tim.2004.05.008; PMID: 15223059
  • Staib P, Morschhäuser J. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme. Mycoses 2007; 50:1 - 12; http://dx.doi.org/10.1111/j.1439-0507.2006.01308.x; PMID: 17302741
  • Soll DR. Why does Candida albicans switch?. FEMS Yeast Res 2009; 9:973 - 89; http://dx.doi.org/10.1111/j.1567-1364.2009.00562.x; PMID: 19744246
  • Odds FC. Candida and Candidosis. second ed. Bailliere Tindall, London, United Kingdom, 1988.
  • Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol 2011; 9:737 - 48; http://dx.doi.org/10.1038/nrmicro2636; PMID: 21844880
  • Albuquerque P, Casadevall A. Quorum sensing in fungi--a review. Med Mycol 2012; 50:337 - 45; http://dx.doi.org/10.3109/13693786.2011.652201; PMID: 22268493
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001; 67:2982 - 92; http://dx.doi.org/10.1128/AEM.67.7.2982-2992.2001; PMID: 11425711
  • Chen H, Fujita M, Feng Q, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans.. Proc Natl Acad Sci U S A 2004; 101:5048 - 52; http://dx.doi.org/10.1073/pnas.0401416101; PMID: 15051880
  • Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans.. Eukaryot Cell 2011; 10:1034 - 42; http://dx.doi.org/10.1128/EC.05060-11; PMID: 21666074
  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012; 10:85 - 93; http://dx.doi.org/10.1586/eri.11.152; PMID: 22149617
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2003; 2:1053 - 60; http://dx.doi.org/10.1128/EC.2.5.1053-1060.2003; PMID: 14555488
  • Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90:939 - 49; http://dx.doi.org/10.1016/S0092-8674(00)80358-X; PMID: 9298905
  • Zheng X, Wang Y, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 2004; 23:1845 - 56; http://dx.doi.org/10.1038/sj.emboj.7600195; PMID: 15071502
  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, et al. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 2008; 4:e1000217; http://dx.doi.org/10.1371/journal.ppat.1000217; PMID: 19023418
  • Garcia MC, Lee JT, Ramsook CB, Alsteens D, Dufrêne YF, Lipke PN. A role for amyloid in cell aggregation and biofilm formation. PLoS One 2011; 6:e17632; http://dx.doi.org/10.1371/journal.pone.0017632; PMID: 21408122
  • Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 2006; 60:5 - 15; http://dx.doi.org/10.1111/j.1365-2958.2006.05072.x; PMID: 16556216
  • Zordan R, Cormack B. Adhesins on Opportunistic Fungal Pathogens. In: Calderone RA, Clancy, C.J., ed. Candida and Candidiasis: ASM Press, Washington, DC, pp 243-259, 2012.
  • Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 2007; 5:e64; http://dx.doi.org/10.1371/journal.pbio.0050064; PMID: 17311474
  • Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One 2012; 7:e33362; http://dx.doi.org/10.1371/journal.pone.0033362; PMID: 22428031
  • Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 2011; 6:e17046; http://dx.doi.org/10.1371/journal.pone.0017046; PMID: 21407800
  • Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 2007; 9:2938 - 54; http://dx.doi.org/10.1111/j.1462-5822.2007.01009.x; PMID: 17645752
  • Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 2011; 13:963 - 76; http://dx.doi.org/10.1016/j.micinf.2011.06.009; PMID: 21801848
  • Cheng G, Wozniak K, Wallig MA, Fidel PL Jr., Trupin SR, Hoyer LL. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005; 73:1656 - 63; http://dx.doi.org/10.1128/IAI.73.3.1656-1663.2005; PMID: 15731066
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999; 283:1535 - 8; http://dx.doi.org/10.1126/science.283.5407.1535; PMID: 10066176
  • Sundstrom P, Balish E, Allen CM. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 2002; 185:521 - 30; http://dx.doi.org/10.1086/338836; PMID: 11865405
  • Sundstrom P, Cutler JE, Staab JF. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun 2002; 70:3281 - 3; http://dx.doi.org/10.1128/IAI.70.6.3281-3283.2002; PMID: 12011025
  • Sundstrom P. Adhesion in Candida spp. Cell Microbiol 2002; 4:461 - 9; http://dx.doi.org/10.1046/j.1462-5822.2002.00206.x; PMID: 12174081
  • Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, et al. Complementary adhesin function in C. albicans biofilm formation. Curr Biol 2008; 18:1017 - 24; http://dx.doi.org/10.1016/j.cub.2008.06.034; PMID: 18635358
  • Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol 2010; 12:273 - 82; http://dx.doi.org/10.1111/j.1462-5822.2009.01412.x; PMID: 19919567
  • Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2010; 12:248 - 71; http://dx.doi.org/10.1111/j.1462-5822.2009.01394.x; PMID: 19863559
  • Phan QT, Fratti RA, Prasadarao NV, Edwards JE Jr., Filler SG. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 2005; 280:10455 - 61; http://dx.doi.org/10.1074/jbc.M412592200; PMID: 15632157
  • Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, E Edwards J, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 2005; 7:499 - 510; http://dx.doi.org/10.1111/j.1462-5822.2004.00476.x; PMID: 15760450
  • Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 2010; 6:e1001181; http://dx.doi.org/10.1371/journal.ppat.1001181; PMID: 21085601
  • Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog 2012; 8:e1002585; http://dx.doi.org/10.1371/journal.ppat.1002585; PMID: 22496639
  • Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 2011; 9:109 - 18; http://dx.doi.org/10.1038/nrmicro2475; PMID: 21189476
  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010; 6:e1000828; http://dx.doi.org/10.1371/journal.ppat.1000828; PMID: 20360962
  • Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, et al. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 2011; 7:e1002257; http://dx.doi.org/10.1371/journal.ppat.1002257; PMID: 21931556
  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans.. Cell 2012; 148:126 - 38; http://dx.doi.org/10.1016/j.cell.2011.10.048; PMID: 22265407
  • Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 2009; 7:e1000133; http://dx.doi.org/10.1371/journal.pbio.1000133; PMID: 19529758
  • Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 2012; 8:e1002848; http://dx.doi.org/10.1371/journal.ppat.1002848; PMID: 22876186
  • Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, et al. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis 2012; In press http://dx.doi.org/10.1093/infdis/jis607; PMID: 23033146
  • Kumamoto CA. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 2008; 6:667 - 73; http://dx.doi.org/10.1038/nrmicro1960; PMID: 18679170
  • Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 2007; 17:347 - 52; http://dx.doi.org/10.1016/j.cub.2006.12.043; PMID: 17275302
  • Brand A, Gow NA. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 2009; 12:350 - 7; http://dx.doi.org/10.1016/j.mib.2009.05.007; PMID: 19546023
  • Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, et al. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans.. Eukaryot Cell 2008; 7:712 - 20; http://dx.doi.org/10.1128/EC.00453-07; PMID: 18281602
  • Wächtler B, Citiulo F, Jablonowski N, Förster S, Dalle F, Schaller M, et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 2012; 7:e36952; http://dx.doi.org/10.1371/journal.pone.0036952; PMID: 22606314
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003; 67:400 - 28; http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003; PMID: 12966142
  • Taylor BN, Hannemann H, Sehnal M, Biesemeier A, Schweizer A, Röllinghoff M, et al. Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect Immun 2005; 73:7061 - 3; http://dx.doi.org/10.1128/IAI.73.10.7061-7063.2005; PMID: 16177393
  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, et al. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 2006; 281:688 - 94; http://dx.doi.org/10.1074/jbc.M509297200; PMID: 16269404
  • Schaller M, Korting HC, Schäfer W, Bastert J, Chen W, Hube B. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 1999; 34:169 - 80; http://dx.doi.org/10.1046/j.1365-2958.1999.01590.x; PMID: 10540295
  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, et al. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 1997; 65:3529 - 38; PMID: 9284116
  • Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans.. Microbiology 2008; 154:3281 - 95; http://dx.doi.org/10.1099/mic.0.2008/022525-0; PMID: 18957582
  • Correia A, Lermann U, Teixeira L, Cerca F, Botelho S, da Costa RM, et al. Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun 2010; 78:4839 - 49; http://dx.doi.org/10.1128/IAI.00248-10; PMID: 20679440
  • Moran GP, Coleman DC, Sullivan DJ. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic?. Int J Microbiol 2012; 2012:205921; http://dx.doi.org/10.1155/2012/205921; PMID: 21904553
  • Niewerth M, Korting HC. Phospholipases of Candida albicans.. Mycoses 2001; 44:361 - 7; http://dx.doi.org/10.1046/j.1439-0507.2001.00685.x; PMID: 11766099
  • Mavor AL, Thewes S, Hube B. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 2005; 6:863 - 74; http://dx.doi.org/10.2174/138945005774912735; PMID: 16375670
  • Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans.. J Biol Chem 1998; 273:26078 - 86; http://dx.doi.org/10.1074/jbc.273.40.26078; PMID: 9748287
  • Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, et al. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol 2006; 296:405 - 20; http://dx.doi.org/10.1016/j.ijmm.2006.03.003; PMID: 16759910
  • Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans.. Microbiology 1997; 143:331 - 40; http://dx.doi.org/10.1099/00221287-143-2-331; PMID: 9043110
  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 2000; 174:362 - 74; http://dx.doi.org/10.1007/s002030000218; PMID: 11131027
  • Gácser A, Stehr F, Kröger C, Kredics L, Schäfer W, Nosanchuk JD. Lipase 8 affects the pathogenesis of Candida albicans.. Infect Immun 2007; 75:4710 - 8; http://dx.doi.org/10.1128/IAI.00372-07; PMID: 17646357
  • Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 2009; 12:365 - 70; http://dx.doi.org/10.1016/j.mib.2009.05.006; PMID: 19632143
  • Fonzi WA. PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol 1999; 181:7070 - 9; PMID: 10559174
  • Mühlschlegel FA, Fonzi WA. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 1997; 17:5960 - 7; PMID: 9315654
  • De Bernardis F, Mühlschlegel FA, Cassone A, Fonzi WA. The pH of the host niche controls gene expression in and virulence of Candida albicans.. Infect Immun 1998; 66:3317 - 25; PMID: 9632601
  • Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 2007; 63:1606 - 28; http://dx.doi.org/10.1111/j.1365-2958.2007.05614.x; PMID: 17367383
  • Mitchell BM, Wu TG, Jackson BE, Wilhelmus KR. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Invest Ophthalmol Vis Sci 2007; 48:774 - 80; http://dx.doi.org/10.1167/iovs.06-0793; PMID: 17251477
  • Yuan X, Mitchell BM, Hua X, Davis DA, Wilhelmus KR. The RIM101 signal transduction pathway regulates Candida albicans virulence during experimental keratomycosis. Invest Ophthalmol Vis Sci 2010; 51:4668 - 76; http://dx.doi.org/10.1167/iovs.09-4726; PMID: 20375342
  • Davis D, Edwards JE Jr., Mitchell AP, Ibrahim AS. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 2000; 68:5953 - 9; http://dx.doi.org/10.1128/IAI.68.10.5953-5959.2000; PMID: 10992507
  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, Nantel A, et al. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 2008; 10:2180 - 96; http://dx.doi.org/10.1111/j.1462-5822.2008.01198.x; PMID: 18627379
  • Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2011; 2:e00055 - 11; http://dx.doi.org/10.1128/mBio.00055-11; PMID: 21586647
  • Mayer FL, Wilson D, Jacobsen ID, Miramón P, Große K, Hube B. The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor. PLoS Pathog 2012; 8:e1002592; http://dx.doi.org/10.1371/journal.ppat.1002592; PMID: 22438810
  • Brown AJP, Haynes K, Gow NAR, Quinn J. Stress Responses in Candida. In: Calderone RA, Clancy, C.J., ed. Candida and Candidiasis: ASM Press, Washington, DC, pp. 225-242., 2012.
  • Brock M. Fungal metabolism in host niches. Curr Opin Microbiol 2009; 12:371 - 6; http://dx.doi.org/10.1016/j.mib.2009.05.004; PMID: 19535285
  • Fleck CB, Schöbel F, Brock M. Nutrient acquisition by pathogenic fungi: nutrient availability, pathway regulation, and differences in substrate utilization. Int J Med Microbiol 2011; 301:400 - 7; http://dx.doi.org/10.1016/j.ijmm.2011.04.007; PMID: 21550848
  • Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 2009; 71:240 - 52; http://dx.doi.org/10.1111/j.1365-2958.2008.06528.x; PMID: 19019164
  • Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 2004; 3:1076 - 87; http://dx.doi.org/10.1128/EC.3.5.1076-1087.2004; PMID: 15470236
  • Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL, Petro TM, et al. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 2009; 77:1596 - 605; http://dx.doi.org/10.1128/IAI.01452-08; PMID: 19188358
  • Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 2012; 14:1319 - 35; http://dx.doi.org/10.1111/j.1462-5822.2012.01813.x; PMID: 22587014
  • Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. Nature 2001; 412:83 - 6; http://dx.doi.org/10.1038/35083594; PMID: 11452311
  • Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 1998; 66:1953 - 61; PMID: 9573075
  • Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS, Kang SO. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 2002; 148:3705 - 13; PMID: 12427960
  • Martchenko M, Alarco AM, Harcus D, Whiteway M. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 2004; 15:456 - 67; http://dx.doi.org/10.1091/mbc.E03-03-0179; PMID: 14617819
  • Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 2005; 16:4814 - 26; http://dx.doi.org/10.1091/mbc.E05-05-0435; PMID: 16030247
  • Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans.. Microbiology 2006; 152:905 - 12; http://dx.doi.org/10.1099/mic.0.28616-0; PMID: 16549655
  • Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, et al. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One 2012; 7:e38584; http://dx.doi.org/10.1371/journal.pone.0038584; PMID: 22685587
  • Diez-Orejas R, Molero G, Navarro-García F, Pla J, Nombela C, Sanchez-Pérez M. Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis. Infect Immun 1997; 65:833 - 7; PMID: 9009353
  • Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, et al. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans.. J Bacteriol 1999; 181:3058 - 68; PMID: 10322006
  • Csank C, Schröppel K, Leberer E, Harcus D, Mohamed O, Meloche S, et al. Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 1998; 66:2713 - 21; PMID: 9596738
  • Lindquist S. Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 1992; 2:748 - 55; http://dx.doi.org/10.1016/S0959-437X(05)80135-2; PMID: 1458023
  • Lindquist S. The heat-shock response. Annu Rev Biochem 1986; 55:1151 - 91; http://dx.doi.org/10.1146/annurev.bi.55.070186.005443; PMID: 2427013
  • Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell 2010; 40:253 - 66; http://dx.doi.org/10.1016/j.molcel.2010.10.006; PMID: 20965420
  • Fiori A, Kucharíková S, Govaert G, Cammue BP, Thevissen K, Van Dijck P. The heat-induced molecular disaggregase Hsp104 of Candida albicans plays a role in biofilm formation and pathogenicity in a worm infection model. Eukaryot Cell 2012; 11:1012 - 20; http://dx.doi.org/10.1128/EC.00147-12; PMID: 22635920
  • Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A 2009; 106:2818 - 23; http://dx.doi.org/10.1073/pnas.0813394106; PMID: 19196973
  • LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, et al. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 2010; 6:e1001069; http://dx.doi.org/10.1371/journal.ppat.1001069; PMID: 20865172
  • Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, et al. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 2009; 19:621 - 9; http://dx.doi.org/10.1016/j.cub.2009.03.017; PMID: 19327993
  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 2009; 5:e1000532; http://dx.doi.org/10.1371/journal.ppat.1000532; PMID: 19649312
  • Li XS, Reddy MS, Baev D, Edgerton M. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 2003; 278:28553 - 61; http://dx.doi.org/10.1074/jbc.M300680200; PMID: 12761219
  • Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 2006; 281:22453 - 63; http://dx.doi.org/10.1074/jbc.M604064200; PMID: 16720580
  • Sun JN, Li W, Jang WS, Nayyar N, Sutton MD, Edgerton M. Uptake of the antifungal cationic peptide Histatin 5 by Candida albicans Ssa2p requires binding to non-conventional sites within the ATPase domain. Mol Microbiol 2008; 70:1246 - 60; http://dx.doi.org/10.1111/j.1365-2958.2008.06480.x; PMID: 19006817
  • Leach MD, Stead DA, Argo E, Brown AJ. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans.. Mol Biol Cell 2011; 22:687 - 702; http://dx.doi.org/10.1091/mbc.E10-07-0632; PMID: 21209325
  • Sorger PK, Pelham HR. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J 1987; 6:3035 - 41; PMID: 3319580
  • Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 1988; 54:855 - 64; http://dx.doi.org/10.1016/S0092-8674(88)91219-6; PMID: 3044613
  • Inglis DO, Arnaud MB, Binkley J, Shah P, Skrzypek MS, Wymore F, et al. The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata.. Nucleic Acids Res 2012; 40:Database issue D667 - 74; http://dx.doi.org/10.1093/nar/gkr945; PMID: 22064862
  • Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64 - 93; http://dx.doi.org/10.1128/MMBR.66.1.64-93.2002; PMID: 11875128
  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, et al. Hsp26: a temperature-regulated chaperone. EMBO J 1999; 18:6744 - 51; http://dx.doi.org/10.1093/emboj/18.23.6744; PMID: 10581247
  • Eyles SJ, Gierasch LM. Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci U S A 2010; 107:2727 - 8; http://dx.doi.org/10.1073/pnas.0915160107; PMID: 20133678
  • Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 2005; 280:23869 - 75; http://dx.doi.org/10.1074/jbc.M502854200; PMID: 15845535
  • Fu MS, De Sordi L, Mühlschlegel FA. Functional characterization of the small heat shock protein Hsp12p from Candida albicans.. PLoS One 2012; 7:e42894; http://dx.doi.org/10.1371/journal.pone.0042894; PMID: 22880130
  • Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525 - 37; http://dx.doi.org/10.1038/nrmicro2836; PMID: 22796883
  • Almeida RS, Wilson D, Hube B. Candida albicans iron acquisition within the host. FEMS Yeast Res 2009; 9:1000 - 12; http://dx.doi.org/10.1111/j.1567-1364.2009.00570.x; PMID: 19788558
  • Cleary IA, Reinhard SM, Miller CL, Murdoch C, Thornhill MH, Lazzell AL, et al. Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Microbiology 2011; 157:1806 - 15; http://dx.doi.org/10.1099/mic.0.046326-0; PMID: 21436220
  • Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 2002; 70:5246 - 55; http://dx.doi.org/10.1128/IAI.70.9.5246-5255.2002; PMID: 12183576
  • Weissman Z, Kornitzer D. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004; 53:1209 - 20; http://dx.doi.org/10.1111/j.1365-2958.2004.04199.x; PMID: 15306022
  • Braun BR, Head WS, Wang MX, Johnson AD. Identification and characterization of TUP1-regulated genes in Candida albicans.. Genetics 2000; 156:31 - 44; PMID: 10978273
  • Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 2012; 8:e1002777; http://dx.doi.org/10.1371/journal.ppat.1002777; PMID: 22761575
  • Soloviev DA, Jawhara S, Fonzi WA. Regulation of innate immune response to Candida albicans infections by αMβ2-Pra1p interaction. Infect Immun 2011; 79:1546 - 58; http://dx.doi.org/10.1128/IAI.00650-10; PMID: 21245270
  • Marvin ME, Williams PH, Cashmore AM. The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology 2003; 149:1461 - 74; http://dx.doi.org/10.1099/mic.0.26172-0; PMID: 12777486
  • Gauwerky K, Borelli C, Korting HC. Targeting virulence: a new paradigm for antifungals. Drug Discov Today 2009; 14:214 - 22; http://dx.doi.org/10.1016/j.drudis.2008.11.013; PMID: 19152839