4,289
Views
16
CrossRef citations to date
0
Altmetric
Review

Molecular genetic techniques for gene manipulation in Candida albicans

, , , , , & show all
Pages 507-520 | Received 29 Oct 2013, Accepted 14 Apr 2014, Published online: 23 Apr 2014

References

  • Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 2007; 45:321 - 46; http://dx.doi.org/10.1080/13693780701218689; PMID: 17510856
  • Schelenz S, Abdallah S, Gray G, Stubbings H, Gow I, Baker P, Hunter PR. Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head neck and solid tumors. J Oral Pathol Med 2011; 40:83 - 9; http://dx.doi.org/10.1111/j.1600-0714.2010.00937.x; PMID: 20923440
  • Epstein JB, Hancock PJ, Nantel S. Oral candidiasis in hematopoietic cell transplantation patients: an outcome-based analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 96:154 - 63; http://dx.doi.org/10.1016/S1079-2104(03)00296-8; PMID: 12931087
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20:133 - 63; http://dx.doi.org/10.1128/CMR.00029-06; PMID: 17223626
  • Li YY, Chen WY, Li X, Li HB, Li HQ, Wang L, He L, Yang XP, Wang XC, Huang YL, et al. Asymptomatic oral yeast carriage and antifungal susceptibility profile of HIV-infected patients in Kunming, Yunnan Province of China. BMC Infect Dis 2013; 13:46; http://dx.doi.org/10.1186/1471-2334-13-46; PMID: 23356471
  • Zhang XB, Yu SJ, Yu JX, Gong YL, Feng W, Sun FJ. Retrospective analysis of epidemiology and prognostic factors for candidemia at a hospital in China, 2000-2009. Jpn J Infect Dis 2012; 65:510 - 5; http://dx.doi.org/10.7883/yoken.65.510; PMID: 23183203
  • De Rosa FG, Garazzino S, Pasero D, Di Perri G, Ranieri VM. Invasive candidiasis and candidemia: new guidelines. Minerva Anestesiol 2009; 75:453 - 8; PMID: 19078900
  • Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 2008; 6:187 - 98; http://dx.doi.org/10.1038/nrmicro1835; PMID: 18246082
  • Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR. Current challenges in the management of invasive fungal infections. J Infect Chemother 2008; 14:77 - 85; http://dx.doi.org/10.1007/s10156-007-0595-7; PMID: 18622668
  • Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC. Candida albicans drug resistance another way to cope with stress. Microbiology 2007; 153:3211 - 7; http://dx.doi.org/10.1099/mic.0.2007/010405-0; PMID: 17906120
  • Barnett JA. A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast 2008; 25:385 - 417; http://dx.doi.org/10.1002/yea.1595; PMID: 18509848
  • Noble SM, Johnson AD. Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 2007; 41:193 - 211; http://dx.doi.org/10.1146/annurev.genet.41.042007.170146; PMID: 17614788
  • Magee PT, Gale C, Berman J, Davis D. Molecular genetic and genomic approaches to the study of medically important fungi. Infect Immun 2003; 71:2299 - 309; http://dx.doi.org/10.1128/IAI.71.5.2299-2309.2003; PMID: 12704098
  • De Backer MD, Magee PT, Pla J. Recent developments in molecular genetics of Candida albicans. Annu Rev Microbiol 2000; 54:463 - 98; http://dx.doi.org/10.1146/annurev.micro.54.1.463; PMID: 11018135
  • d’Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, Tekaia F, Bader O, Albrecht A, Castillo L, Dominguez A, et al. CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 2005; 33:D353 - 7; http://dx.doi.org/10.1093/nar/gki124; PMID: 15608215
  • Milne SW, Cheetham J, Lloyd D, Aves S, Bates S. Cassettes for PCR-mediated gene tagging in Candida albicans utilizing nourseothricin resistance. Yeast 2011; 28:833 - 41; http://dx.doi.org/10.1002/yea.1910; PMID: 22072586
  • Walther A, Wendland J. PCR-based gene targeting in Candida albicans. Nat Protoc 2008; 3:1414 - 21; http://dx.doi.org/10.1038/nprot.2008.137; PMID: 18772868
  • Schaub Y, Dünkler A, Walther A, Wendland J. New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J Basic Microbiol 2006; 46:416 - 29; http://dx.doi.org/10.1002/jobm.200510133; PMID: 17009297
  • Wilson RB, Davis D, Enloe BM, Mitchell AP. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 2000; 16:65 - 70; http://dx.doi.org/10.1002/(SICI)1097-0061(20000115)16:1<65::AID-YEA508>3.0.CO;2-M; PMID: 10620776
  • Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 2003; 50:167 - 81; http://dx.doi.org/10.1046/j.1365-2958.2003.03697.x; PMID: 14507372
  • Fonzi WA. Role of pH response in Candida albicans virulence. Mycoses 2002; 45:Suppl 1 16 - 21; http://dx.doi.org/10.1111/j.1439-0507.2002.tb04540.x; PMID: 12073557
  • Hernday AD, Noble SM, Mitrovich QM, Johnson AD. Genetics and molecular biology in Candida albicans. Methods Enzymol 2010; 470:737 - 58; http://dx.doi.org/10.1016/S0076-6879(10)70031-8; PMID: 20946834
  • Lavoie H, Sellam A, Askew C, Nantel A, Whiteway M. A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics 2008; 9:578; http://dx.doi.org/10.1186/1471-2164-9-578; PMID: 19055720
  • Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 1998; 66:5301 - 6; PMID: 9784536
  • Negredo A, Monteoliva L, Gil C, Pla J, Nombela C. Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 1997; 143:297 - 302; http://dx.doi.org/10.1099/00221287-143-2-297; PMID: 9043106
  • Wilson RB, Davis D, Mitchell AP. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 1999; 181:1868 - 74; PMID: 10074081
  • García MG, O’Connor JE, García LL, Martínez SI, Herrero E, del Castillo Agudo L. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation. Yeast 2001; 18:301 - 11; http://dx.doi.org/10.1002/1097-0061(20010315)18:4<301::AID-YEA672>3.0.CO;2-H; PMID: 11223939
  • Ramanan N, Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science 2000; 288:1062 - 4; http://dx.doi.org/10.1126/science.288.5468.1062; PMID: 10807578
  • Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 2004; 3:900 - 9; http://dx.doi.org/10.1128/EC.3.4.900-909.2004; PMID: 15302823
  • Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 2006; 23:399 - 405; http://dx.doi.org/10.1002/yea.1365; PMID: 16598691
  • Davidson JF, Schiestl RH. Mis-targeting of multiple gene disruption constructs containing hisG. Curr Genet 2000; 38:188 - 90; http://dx.doi.org/10.1007/s002940000154; PMID: 11126777
  • Sharkey LL, Liao WL, Ghosh AK, Fonzi WA. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology 2005; 151:1061 - 71; http://dx.doi.org/10.1099/mic.0.27487-0; PMID: 15817775
  • Cheng S, Nguyen MH, Zhang Z, Jia H, Handfield M, Clancy CJ. Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 2003; 71:6101 - 3; http://dx.doi.org/10.1128/IAI.71.10.6101-6103.2003; PMID: 14500538
  • Murad AM, Lee PR, Broadbent ID, Barelle CJ, Brown AJ. CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 2000; 16:325 - 7; http://dx.doi.org/10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#; PMID: 10669870
  • Sundstrom P, Cutler JE, Staab JF. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun 2002; 70:3281 - 3; http://dx.doi.org/10.1128/IAI.70.6.3281-3283.2002; PMID: 12011025
  • Davis D, Edwards JE Jr., Mitchell AP, Ibrahim AS. Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 2000; 68:5953 - 9; http://dx.doi.org/10.1128/IAI.68.10.5953-5959.2000; PMID: 10992507
  • Ramón AM, Fonzi WA. Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2003; 2:718 - 28; http://dx.doi.org/10.1128/EC.2.4.718-728.2003; PMID: 12912891
  • Morschhäuser J, Michel S, Staib P. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 1999; 32:547 - 56; http://dx.doi.org/10.1046/j.1365-2958.1999.01393.x; PMID: 10320577
  • Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics 1993; 134:717 - 28; PMID: 8349105
  • Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, Oliver SG. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 2000; 252:127 - 35; http://dx.doi.org/10.1016/S0378-1119(00)00217-1; PMID: 10903444
  • Samaranayake DP, Hanes SD. Milestones in Candida albicans gene manipulation. Fungal Genet Biol 2011; 48:858 - 65; http://dx.doi.org/10.1016/j.fgb.2011.04.003; PMID: 21511047
  • Ganguly S, Mitchell AP. Mini-blaster-mediated targeted gene disruption and marker complementation in Candida albicans. Methods Mol Biol 2012; 845:19 - 39; http://dx.doi.org/10.1007/978-1-61779-539-8_2; PMID: 22328365
  • Enloe B, Diamond A, Mitchell AP. A single-transformation gene function test in diploid Candida albicans. J Bacteriol 2000; 182:5730 - 6; http://dx.doi.org/10.1128/JB.182.20.5730-5736.2000; PMID: 11004171
  • Nobile CJ, Mitchell AP. Large-scale gene disruption using the UAU1 cassette. Methods Mol Biol 2009; 499:175 - 94; http://dx.doi.org/10.1007/978-1-60327-151-6_17; PMID: 19152049
  • Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 2005; 4:298 - 309; http://dx.doi.org/10.1128/EC.4.2.298-309.2005; PMID: 15701792
  • Dennison PM, Ramsdale M, Manson CL, Brown AJ. Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol 2005; 42:737 - 48; http://dx.doi.org/10.1016/j.fgb.2005.05.006; PMID: 16043373
  • Wirsching S, Michel S, Morschhäuser J. Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 2000; 36:856 - 65; http://dx.doi.org/10.1046/j.1365-2958.2000.01899.x; PMID: 10844673
  • Goshorn AK, Scherer S. Genetic analysis of prototrophic natural variants of Candida albicans. Genetics 1989; 123:667 - 73; PMID: 2575557
  • Köhler GA, White TC, Agabian N. Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 1997; 179:2331 - 8; PMID: 9079920
  • Wirsching S, Michel S, Köhler G, Morschhäuser J. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 2000; 182:400 - 4; http://dx.doi.org/10.1128/JB.182.2.400-404.2000; PMID: 10629186
  • Reuss O, Vik A, Kolter R, Morschhäuser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 2004; 341:119 - 27; http://dx.doi.org/10.1016/j.gene.2004.06.021; PMID: 15474295
  • Shen J, Guo W, Köhler JR. CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun 2005; 73:1239 - 42; http://dx.doi.org/10.1128/IAI.73.2.1239-1242.2005; PMID: 15664973
  • Sasse C, Morschhäuser J. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods Mol Biol 2012; 845:3 - 17; http://dx.doi.org/10.1007/978-1-61779-539-8_1; PMID: 22328364
  • Park YN, Morschhäuser J. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot Cell 2005; 4:1328 - 42; http://dx.doi.org/10.1128/EC.4.8.1328-1342.2005; PMID: 16087738
  • Michel S, Ushinsky S, Klebl B, Leberer E, Thomas D, Whiteway M, Morschhäuser J. Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol 2002; 46:269 - 80; http://dx.doi.org/10.1046/j.1365-2958.2002.03167.x; PMID: 12366849
  • Ermak G, Cancasci VJ, Davies KJ. Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Anal Biochem 2003; 318:152 - 4; http://dx.doi.org/10.1016/S0003-2697(03)00166-0; PMID: 12782044
  • Oppermann M, Fechner H, Eberle J. Dimethyl sulfoxide enhances doxycycline-dependent protein expression in Tet-On cells. Biotechniques 2007; 42:304 - , 306, 308 passim; http://dx.doi.org/10.2144/000112387; PMID: 17390537
  • Fiori A, Van Dijck P. Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 2012; 56:3785 - 96; http://dx.doi.org/10.1128/AAC.06017-11; PMID: 22564841
  • Backen AC, Broadbent ID, Fetherston RW, Rosamond JD, Schnell NF, Stark MJ. Evaluation of the CaMAL2 promoter for regulated expression of genes in Candida albicans. Yeast 2000; 16:1121 - 9; http://dx.doi.org/10.1002/1097-0061(20000915)16:12<1121::AID-YEA614>3.0.CO;2-U; PMID: 10953084
  • Gola S, Martin R, Walther A, Dünkler A, Wendland J. New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 2003; 20:1339 - 47; http://dx.doi.org/10.1002/yea.1044; PMID: 14663826
  • Gunasekera A, Alvarez FJ, Douglas LM, Wang HX, Rosebrock AP, Konopka JB. Identification of GIG1, a GlcNAc-induced gene in Candida albicans needed for normal sensitivity to the chitin synthase inhibitor nikkomycin Z. Eukaryot Cell 2010; 9:1476 - 83; http://dx.doi.org/10.1128/EC.00178-10; PMID: 20675577
  • Bain JM, Stubberfield C, Gow NA. Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 2001; 204:323 - 8; http://dx.doi.org/10.1111/j.1574-6968.2001.tb10905.x; PMID: 11731143
  • Staab JF, Sundstrom P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol 2003; 11:69 - 73; http://dx.doi.org/10.1016/S0966-842X(02)00029-X; PMID: 12598128
  • Oldenburg KR, Vo KT, Michaelis S, Paddon C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 1997; 25:451 - 2; http://dx.doi.org/10.1093/nar/25.2.451; PMID: 9016579
  • Chen C, Noble SM. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog 2012; 8:e1002956; http://dx.doi.org/10.1371/journal.ppat.1002956; PMID: 23133381
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19 - 27; PMID: 2659436
  • Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 1997; 16:1982 - 91; http://dx.doi.org/10.1093/emboj/16.8.1982; PMID: 9155024
  • Niimi M, Niimi K, Takano Y, Holmes AR, Fischer FJ, Uehara Y, Cannon RD. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother 2004; 54:999 - 1006; http://dx.doi.org/10.1093/jac/dkh456; PMID: 15486081
  • Sung MK, Ha CW, Huh WK. A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae. Yeast 2008; 25:301 - 11; http://dx.doi.org/10.1002/yea.1588; PMID: 18350525
  • Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998; 14:953 - 61; http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U; PMID: 9717241
  • Krawchuk MD, Wahls WP. High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 1999; 15:1419 - 27; http://dx.doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q; PMID: 10509024
  • Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 1998; 14:943 - 51; http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y; PMID: 9717240
  • Gerami-Nejad M, Berman J, Gale CA. Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 2001; 18:859 - 64; http://dx.doi.org/10.1002/yea.738; PMID: 11427968
  • Gerami-Nejad M, Hausauer D, McClellan M, Berman J, Gale C. Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast 2004; 21:429 - 36; http://dx.doi.org/10.1002/yea.1080; PMID: 15116343
  • Gerami-Nejad M, Dulmage K, Berman J. Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans. Yeast 2009; 26:399 - 406; http://dx.doi.org/10.1002/yea.1674; PMID: 19504625
  • Morschhäuser J, Michel S, Hacker J. Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet 1998; 257:412 - 20; http://dx.doi.org/10.1007/s004380050665; PMID: 9529522
  • Doyle TC, Nawotka KA, Purchio AF, Akin AR, Francis KP, Contag PR. Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog 2006; 40:69 - 81; http://dx.doi.org/10.1016/j.micpath.2005.11.002; PMID: 16427765
  • Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR. Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog 2006; 40:82 - 90; http://dx.doi.org/10.1016/j.micpath.2005.11.003; PMID: 16426810
  • Toyoda T, Masunaga K, Ohtsu Y, Hara K, Hamada N, Kashiwagi T, Iwahashi J. Antibody-scanning and epitope-tagging methods; molecular mapping of proteins using antibodies. Curr Protein Pept Sci 2000; 1:303 - 8; http://dx.doi.org/10.2174/1389203003381360; PMID: 12369911
  • Balish E. A URA3 null mutant of Candida albicans (CAI-4) causes oro-oesophageal and gastric candidiasis and is lethal for gnotobiotic, transgenic mice (Tgepsilon26) that are deficient in both natural killer and T cells. J Med Microbiol 2009; 58:290 - 5; http://dx.doi.org/10.1099/jmm.0.004846-0; PMID: 19208876
  • Chibana H, Uno J, Cho T, Mikami Y. Mutation in IRO1 tightly linked with URA3 gene reduces virulence of Candida albicans. Microbiol Immunol 2005; 49:937 - 9; http://dx.doi.org/10.1111/j.1348-0421.2005.tb03686.x; PMID: 16237272
  • Chen X, Magee BB, Dawson D, Magee PT, Kumamoto CA. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol Microbiol 2004; 51:551 - 65; http://dx.doi.org/10.1046/j.1365-2958.2003.03852.x; PMID: 14756793
  • Riggle PJ, Kumamoto CA. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 2000; 182:4899 - 905; http://dx.doi.org/10.1128/JB.182.17.4899-4905.2000; PMID: 10940034
  • Rogers KM, Pierson CA, Culbertson NT, Mo C, Sturm AM, Eckstein J, Barbuch R, Lees ND, Bard M. Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity. Antimicrob Agents Chemother 2004; 48:3425 - 35; http://dx.doi.org/10.1128/AAC.48.9.3425-3435.2004; PMID: 15328107
  • Arbour M, Epp E, Hogues H, Sellam A, Lacroix C, Rauceo J, Mitchell A, Whiteway M, Nantel A. Widespread occurrence of chromosomal aneuploidy following the routine production of Candida albicans mutants. FEMS Yeast Res 2009; 9:1070 - 7; http://dx.doi.org/10.1111/j.1567-1364.2009.00563.x; PMID: 19732157
  • Selmecki A, Bergmann S, Berman J. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 2005; 55:1553 - 65; http://dx.doi.org/10.1111/j.1365-2958.2005.04492.x; PMID: 15720560
  • Ahmad A, Kabir MA, Kravets A, Andaluz E, Larriba G, Rustchenko E. Chromosome instability and unusual features of some widely used strains of Candida albicans. Yeast 2008; 25:433 - 48; http://dx.doi.org/10.1002/yea.1597; PMID: 18509849
  • Rustchenko EP, Howard DH, Sherman F. Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J Bacteriol 1994; 176:3231 - 41; PMID: 8195078
  • Kabir MA, Ahmad A, Greenberg JR, Wang YK, Rustchenko E. Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators. Proc Natl Acad Sci U S A 2005; 102:12147 - 52; http://dx.doi.org/10.1073/pnas.0505625102; PMID: 16099828
  • Rustchenko E. Chromosome instability in Candida albicans. FEMS Yeast Res 2007; 7:2 - 11; http://dx.doi.org/10.1111/j.1567-1364.2006.00150.x; PMID: 17311580
  • Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, Berman J, Bille J, Sanglard D. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 2006; 172:2139 - 56; http://dx.doi.org/10.1534/genetics.105.054767; PMID: 16452151
  • Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006; 313:367 - 70; http://dx.doi.org/10.1126/science.1128242; PMID: 16857942
  • Bouchonville K, Forche A, Tang KE, Selmecki A, Berman J. Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. Eukaryot Cell 2009; 8:1554 - 66; http://dx.doi.org/10.1128/EC.00209-09; PMID: 19700634
  • Oh J, Fung E, Schlecht U, Davis RW, Giaever G, St Onge RP, Deutschbauer A, Nislow C. Gene annotation and drug target discovery in Candida albicans with a tagged transposon mutant collection. PLoS Pathog 2010; 6:e1001140; http://dx.doi.org/10.1371/journal.ppat.1001140; PMID: 20949076
  • Pirrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations. Mol Cell 2005; 18:395 - 8; http://dx.doi.org/10.1016/j.molcel.2005.04.013; PMID: 15893722
  • Tartof KD. Position effect variegation in yeast. Bioessays 1994; 16:713 - 4; http://dx.doi.org/10.1002/bies.950161004; PMID: 7980474
  • Gerami-Nejad M, Zacchi LF, McClellan M, Matter K, Berman J. Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. Microbiology 2013; 159:565 - 79; http://dx.doi.org/10.1099/mic.0.064097-0; PMID: 23306673
  • Lai WC, Tseng TL, Jian T, Lee TL, Cheng CW, Shieh JC. Construction of Candida albicans Tet-on tagging vectors with a Ura-blaster cassette. Yeast 2011; 28:253 - 63; http://dx.doi.org/10.1002/yea.1833; PMID: 21360736
  • Moazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, Noorbakhsh F, Teimoori-Toolabi L, Rezaie S. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology. Mycopathologia 2012; 174:177 - 85; http://dx.doi.org/10.1007/s11046-012-9539-6; PMID: 22484810
  • Vieira N, Pereira F, Casal M, Brown AJ, Paiva S, Johansson B. Plasmids for in vivo construction of integrative Candida albicans vectors in Saccharomyces cerevisiae. Yeast 2010; 27:933 - 9; http://dx.doi.org/10.1002/yea.1800; PMID: 20602447
  • Kim MS, Kim SY, Yoon JK, Lee YW, Bahn YS. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res Commun 2009; 390:983 - 8; http://dx.doi.org/10.1016/j.bbrc.2009.10.089; PMID: 19852932
  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326:1509 - 12; http://dx.doi.org/10.1126/science.1178811; PMID: 19933107
  • Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 2010; 48:419 - 36; http://dx.doi.org/10.1146/annurev-phyto-080508-081936; PMID: 19400638
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14:49 - 55; http://dx.doi.org/10.1038/nrm3486; PMID: 23169466
  • Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326:1501; http://dx.doi.org/10.1126/science.1178817; PMID: 19933106
  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339:823 - 6; http://dx.doi.org/10.1126/science.1232033; PMID: 23287722
  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153:910 - 8; http://dx.doi.org/10.1016/j.cell.2013.04.025; PMID: 23643243
  • Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 2013; 8:e68708; http://dx.doi.org/10.1371/journal.pone.0068708; PMID: 23874735
  • Waaijers S, Portegijs V, Kerver J, Lemmens BB, Tijsterman M, van den Heuvel S, Boxem M. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans. Genetics 2013; 195:1187 - 91; http://dx.doi.org/10.1534/genetics.113.156299; PMID: 23979586
  • Green CB, Zhao X, Yeater KM, Hoyer LL. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 2005; 151:1051 - 60; http://dx.doi.org/10.1099/mic.0.27696-0; PMID: 15817774
  • Barelle CJ, Manson CL, MacCallum DM, Odds FC, Gow NA, Brown AJ. GFP as a quantitative reporter of gene regulation in Candida albicans. Yeast 2004; 21:333 - 40; http://dx.doi.org/10.1002/yea.1099; PMID: 15042593