386
Views
11
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Formation and repair of clustered damaged DNA sites in high LET irradiated cells

, &
Pages 820-826 | Received 20 Jan 2015, Accepted 17 Jun 2015, Published online: 18 Sep 2015
 

Abstract

Purpose: Radiation with high linear energy transfer (LET) produces clustering of DNA double-strand breaks (DSB) as well as non-DSB lesions. Heat-labile sites (HLS) are non-DSB lesions in irradiated cells that may convert into DSB at elevated temperature during preparation of naked DNA for electrophoretic assays and here we studied the initial formation and repair of these clustered damaged sites after irradiation with high LET ions.

Materials and methods: Induction and repair of DSB were studied in normal human skin fibroblast (GM5758) after irradiation with accelerated carbon and nitrogen ions at an LET of 125 eV/nm. DNA fragmentation was analyzed by pulsed-field gel electrophoresis (PFGE) and by varying the lysis condition we could differentiate between prompt DSB and heat-released DSB.

Results: Before repair (t = 0 h), the 125 eV/nm ions produced a significant fraction of heat-released DSB, which appeared clustered on DNA fragments with sizes of 1 Mbp or less. These heat-released DSB increased the total number of DSB by 30–40%. This increase is similar to what has been found in low-LET irradiated cells, suggesting that the relative biological effectiveness (RBE) for DSB induction will not be largely affected by the lysis temperature. After 1–2 hours repair, a large fraction of DSB was still unrejoined but there was essentially no heat-released DSB present.

Conclusions: These results suggest that high LET radiation, as low LET gamma radiation, induces a significant fraction of heat-labile sites which can be converted into DSB, and these heat-released DSB may affect both induction yields and estimates of repair.

Acknowledgements

This research was supported by grants from the Swedish Cancer Society and Swedish Radiation Safety Authority. The authors are grateful to the Svedberg Laboratory cyclotron staff for beam delivery.

Declaration of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.